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Abstract

ABSTRACT

In this thesis, the Finite Element Method of structural analysis is used to
investigate and compare the performance of several strain-based elements. Two
new strain-based triangular and rectangular finite elements in Cartesian
coordinates system, for two dimensiona elasticity problems are devel oped.
Each of these elements has three degrees of freedom per node. The “Strain
Based Approach” is used to devel op and formulate these two dimensional finite
elements. In this approach, finite elements are formulated based on assumed
polynomial strains rather than displacements.

Two main computer programs are developed to analyze the new finite
elements. To test the performance of these elements, they are used to solve two
common plane elasticity problems. The problems considered included are: the
problem of a plane deep cantilever beam fixed at one end and loaded by a point
load at the free end; and the problem of a simply supported beam loaded at the
mid-span by a point load.

The finite element solutions obtained for these problems are compared with the
analytical values given by the elasticity solutions.

Results obtained using the new triangular and rectangular elements are also
compared to those of the well-known constant strain triangular element (CST)
and the bilinear rectangular element (BRE) respectively.

In al cases, convergence curves for deflection at specific points within each
problem are plotted to show that acceptable levels of accuracy. Furthermore,
convergence curves for bending stress at points on the upper surface and shear

stress at points on the neutral axis are plotted; again convergence is ensured.
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List of Abbreviations (Notations)

LIST OF ABBREVIATIONS (NOTATIONYS)

Symbol Notation

X,y Cartesian coordinates

T Thickness of the element

E Y oung’s Modulus of Elasticity

n Poisson’s ratio

U Displacement in the x direction

\% Displacement in they direction

f In-plane rotation

& € Direct strainsin the x and y directions, respectively
Oy Shear strain

Sy, Sy Normal stressesin the x and y directions, respectively
Tyy Shear stress

C] Displacement transformation matrix

[B] Strain matrix

[D] Rigidity matrix

K| Element stiffness matrix

[Q] Strain energy matrix

{5} Element nodal displacement vector

P Total Potential Energy

DoF Degree of Freedom

CST Constant Strain Triangle

BRE Bilinear Rectangular Element

SBTREIR Strain-Based Triangular Element with In-plane Rotation
SBREIR Strain-Based Rectangular Element with In-plane Rotation
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Chapter 1: Introduction

1. CHAPTER ONE: INTRODUCTION

1.1 INTRODUCTION

The conventional analytical approaches to solution of plane elasticity problems
are based on determining the necessary equations governing the behavior of the
structure by taking into account equilibrium and compatibility within the
structure as in the methods developed in the theory of elasticity [4], [32] &
[35]. The solution to these equations exists only for special cases of loading
and boundary conditions. Due to the complex nature of the shape of the
structure, loading pattern, irregularities in geometry or material, the analytical
solution normally becomes difficult and even impossible to solve such
problems for displacements, stress or strains within the structure. The need for
some other technique, such as suitable numerical methods for tackling the more
complex structures with arbitrary shapes, loading and boundary conditions, is
then essential.

Severa approximate numerical methods have evolved over the years. One of
the common methods is the Finite Difference scheme in which an
approximation to the governing equations is used. The solution is formed by
writing difference equations for a grid points. The solution isimproved as more
points are used. With this technique, some fairly difficult problems can be
treated, but for example, for problems of irregular geometries or unusual
specification of boundary conditions, the solution becomes more complex and
difficult to obtain. On the other hand, the Finite Element Method (FEM), can
take care of al these complex problems, and hence has become more
widespread in finding solutions to complex structural and non-structural

problems.

www.manaraa.com



Chapter 1: Introduction

The Finite Element Method (FEM), or Finite Element Analysis (FEA), is based
on the idea of building a complicated object with simple blocks, or, dividing a
complicated object into small and manageable pieces. Application of this
simple idea can be found everywhere in everyday life as well asin engineering.
FEM is a powerful method for the analysis of continuous structures including
complex geometrical configurations, material properties, or loading. These
structures are idealized as consisting of one, two or three-dimensional elements
connected at the nodal points, common edges, or surfaces. An important
category is the “two dimensiona plane elasticity problems”. These problems
are characterized by the following assumptions:

- two dimensions are large, the third is small,

- the structureis plane

- theloads act parallel to the plane.

These structures are described by the mid plane and the thickness distribution.
Because of the specia type of loading, the general three-dimensional behavior
of a continuum can be reduced to two dimensions by the assumption of
constant distributed stresses or strains throughout the thickness. The English
term “plate” only reflects the geometry of the structure whereas the German
term “Scheibe” additionally refers to the fact that only membrane action is
present with no bending or twisting. The following terms might alternatively be
used:

- in-plane loaded plate (plane stress)

- membrane structure

- plane stress/ strain structure

The two-dimensiona plate elements (that will be studied in this thesis) are
extremely important for:

(1) Plane stress analysis which is defined as the state of stress in which the
normal stress and the shear stresses directed perpendicular to the plane
are assumed to be zero. This includes problems such as plates with
holes, fillets or other changes in geometry that result in stress

concentrations.
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Chapter 1: Introduction

(2) Plane strain analysis which is defined as the state of strain in which the
direct and shear strains normal to the x-y plane are assumed to be zero.
This includes problems such as long underground box culverts
subjected to uniform load acting constantly along its length, or a dam
subjected to the hydrostatic horizontal loading along its length [15].

1.2 HISTORY OF FINITE ELEMENT METHOD

The modern development of the finite element method in the field of structural
engineering dates back to 1941 and 1943, when its key features were published
by Courant [4], Hrenikoff [10] and McHenry [15]. The work of Courant is
particularly significant because of its concern with problems governed by
eguations applicable to structural mechanics and other situations. He proposed
setting up the solution of stresses in the variational form. Then he introduced
piecewise interpolation functions (shape functions) over triangular sub-regions
making the whole region to obtain the approximate numerical solution.

In 1947, Levy [13] developed the flexibility method (force method) and in
1953 he suggested that the use of the displacement method could be a good
aternative for the analyzing statically redundant aircraft wings [14]. This
method became popular only later after the invention of the high-speed
computers.

In 1954, Argyris and Kelsey [12] gave a very genera formulation of the
stiffness matrix method based on the fundamental energy principles of
eladticity. Thisillustrated the importance of the energy principles and their role
in the development of the finite element method.

In 1956, Turner, Clough, Martin and Topp [34] presented the first treatment of
the two dimensional elements. They derived the stiffness matrices for
triangular and rectangular elements based on assumed displacements and they
outlined the procedure commonly known as the Direct Stiffness Method for
assembling the total stiffness matrix of the structure. Thisis regarded as one of

the key contributions in the discovery of the finite element method.
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Chapter 1: Introduction

The technology of finite elements has advanced through a number of indistinct
phases in the period since the mid 1950’s. The formulation of the triangular and
rectangular elements for plane stress has motivated the researchers to continue
and establish element relationships for solids, plates in bending and thin shells.
In 1960’s, linear strain triangular element was developed [33]. This element
has 6 nodes with 2 degrees of freedom per node. The derivation of the stiffness
matrix for this element was difficult. The isoparametric formulation was then
developed [11] in which both the element geometry and displacements are
defined by the same interpolation functions. This formulation was then applied
to two and three dimensional stress analysis where higher order triangular and
rectangular plane elements were developed. Also, brick elements were
developed for three dimensional stress analysis. Elements created can be non
rectangular and have curved sides.

By the early 1970’s, this method was further developed for use in the aerospace
and nuclear industries where the safety of the structures is critical. Since the
rapid decline in the cost of computers, FEM has been developed to an
incredible precision. Currently, there exist commercial finite el ement packages
that are capable of solving the most sophisticated problems for static as well as
dynamic loading, in a wide range of structura as well as non-structural
applications.

Before reviewing the available finite element solutions for two dimensional
structures, a brief introduction to the finite element method is presented
showing a description of the procedure for obtaining the stiffness matrix of the

genera (triangular or rectangular) plane element.

1.3 PROCEDURE OF THE FINITE ELEMENT METHOD

In continuum problem of any dimension, the field variable (whether it is
pressure, temperature, displacement, stress or some other quantity) possesses

infinite values because it is a function of each generic point in the body or
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Chapter 1: Introduction

solution region. Consequently, the problem is one with an infinite number of
unknowns. The finite element discretization procedure reduces the problem to
one of finite numbers of unknowns by dividing the solution region into
elements and by expressing the unknown field variable in terms of assumed
approximating function within each element. The approximation functions are
defined in terms of the values of the field variables at specified points called
nodes or noda points. Nodes usually lie on the element boundaries where
adjacent elements are considered to be connected. The nodal values of the field
variable and the approximation for the elements completely define the behavior
of the field variables within the elements. For the finite element representation
of a problem, the nodal values of the field variables become the new
unknowns. Once these unknowns are found, the functions define the field
variable throughout the assemblage of elements.

Clearly, the nature of the solution and the degree of approximation depend not
only on the size and the number of the elements used, but also on the selected
approximation functions.

An important feature of the finite element method that sets it apart from other
approximate numerical methods is the ability to formulate solutions for
individual elements before putting them together to represent the entire
problem. Another advantage of the finite element method is the variety of ways
in which one can formulate the properties of individual elements. The most
common approach to obtaining element properties is called “displacement

approach” and the method can be summarized as described below.

1.3.1 Idealization of the Structure

The idedlization governs the type of the element that must be used in the
solution of the structure. A variety of element shapes can be used, and with
care, different element shapes may be employed in the same solution. Indeed

when analyzing, for example, an elastic shell that has different types of
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Chapter 1: Introduction

components such as stiffener beams, it is necessary to use different types of

elements in the same solution.

1.3.2 Formulation of Element Stiffness Matrix

The evaluation of the stiffness matrix for a finite element is the most critical
step in the whole procedure because it controls the accuracy of the
approximation. This step includes the choice of:

- The number of nodes and the number of nodal degrees of freedom that
determines the size of the stiffness matrix. An element may contain
corner nodes, side nodes and/or interior nodes. The degrees of freedom
are usually referred to the displacements and their first-order partial
derivatives at a node but very often include second or higher order
partial derivatives.

- The theory that determines the stress-strain and strain-displacement
relationships to be used in deriving the element matrices.

- The displacement functions (simple polynomial) or interpolation
functions in terms of the coordinate variable and a number of constants
(equal to the total number of degrees of freedom in the element). The
displacement functions are then chosen to represent the variation of the
displacements within each element.

By using the principle of virtual work or the principle of minimum potential
energy, a stiffness matrix relating the nodal forces to the nodal displacements
can be derived. Hence, the choice of suitable displacement functions is the

major factor to be considered in deriving element stiffness matrices.

1.3.3 General Procedurefor Derivation of Element Stiffness M atrix

A stiffness matrix expresses the relation between the nodal |oads applied to the
element, and the nodal displacements. Such a relation can be derived from

consideration of geometry, relations in the theory of elasticity and the

6
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Chapter 1: Introduction

conditions of equilibrium [21]. Thus, if |A| is the vector containing the
displacement functions of the element, | o |is the vector containing the stresses
and | ¢ | isthe corresponding strains, and if:

{ab=[t ]{a} Eq. 1-1

where [f] is the matrix containing the coordinate variables (x, y, etc.)

and | A |is the vector of constant terms (al, a2, ... etc.) of the displacement

function |A| respectively, we can apply equation (1-1) to the nodes of the

element to relate the displacement within the element to its nodal

displacements then we obtain:

{s}=[c]{A} Eq. 1-2
Fromwhich |A|=[C]"|3| Eq. 1-3
where | 3| is the vector containing the nodal degrees of freedom of the element
and [C ] IS the transformation matrix resulting from substitution the coordinates
of each nodal point into the [ f | matrix. Therefore, by substituting equation (1-
3) into equation (1-1), the latter becomes:

|a|=[f][c]|5] Eq. 1-4
Now, we can express the strains by using the fact that the strains are the

derivatives of the displacements and by using equation (1-4):
{eh=[B][c]" {3} Eq. 1-5
where [ B] is called the strain matrix and it contains the necessary derivatives
of [f | corresponding to the strain-displacement relationship. Also from Hook's
law, the stresses within the element can be expressed as

{c}=[D]{g} Eq. 1-6
Thus from (1-6) and (1-5)

{cs}=[D][B][C]" {3} Eq. 1.7

where [ D ] is called the rigidity matrix that contains the material properties.
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Chapter 1: Introduction

In order to relate the applied nodal loads to the nodal displacements, the nodal
loads should first be related to the internal stresses, using the conditions of
equilibrium, and then to the nodal displacements using equations (1-5) & (1-7).
Using the principle of minimization of the potential energy, we can derive the
stiffness of the element. The total potential energy, P, of an element is the
difference between the strain energy stored by the internal stresses, U, and the

potential energy of the applied loadsW,

m=uU-w Eq. 1-8
An expression for the strain energy may be written as:

I N &

=5 @ el |o|dvol Eq. 1-9

vol

Using equations 1-5 and 1-6, we get
1, ) }
=3 5|" [ (8" PlBlic]™ 5 javol Eq. 1-10

while the potential energy of the applied loadsW (including the contribution of

body forces and surface traction forces) is written as

Q ={s}'{P} Eq. 1-11
So we have
:%{5}T (‘)[c-l]T[B]T [D][B][c] " avol {5}- {s}" {P} Eq. 1-12

where | & | has been taken out of the integral, as it is independent of the general

x-y coordinates. Now, by differentiating P and equating it to zero, we get

3_1; - dc_l]T [B]" [D][B][C] *dval {s}- {P}=0

or, {Ph=|k°|{e}

where

k] =[c [ [¢ [e] ][] avo ][] £, 113

is the element stiffness matrix.
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1.3.4 Assembly of the Overall Structural Matrix and the Solution Routine

To obtain a solution for the overall system modeled by a network of elements,
we must first “assemble” al the elements’ stiffness matrices. In other words,
we must combine the matrix equations expressing the behavior of the entire
structure. Thisis done using the principle of superposition; it is aso called the
“direct stiffness method”. The basis for the assembly procedure stems from the
facts that:

- At a node where elements are interconnected, the value of the field
variable (generated displacements) is the same for each element sharing
that node so that the structure remains together and no tearing or overlap
occur anywhere in the structure.

- Equilibrium is satisfied at each node. i.e. the sum of all the interna
nodal forces meeting at a node must be equal to the externally applied
forces at that node.

Therefore, to implement these two facts a ssimple computer program can be
written and used for the assembly of any number of elements. The resulting
stiffness matrix of the element (and hence that of the total structures) is
symmetrical and singular matrix. So, the resulting simultaneous equations can
be solved, after the introduction of the boundary conditions to the specific
problem to obtain the nodal displacements and these are then used for the

calculation of the stresses.

1.3.5 ConvergenceCriteria

A characteristic of the finite element method is that the results should approach
the exact values as more and more elements are used. With good displacement
functions, convergence towards the exact value will be much faster than with
poor functions, thus resulting in a reduction of the modeling and computing
time and effort. In order to achieve the convergence towards the exact value of

the required variables, the displacement functions chosen should try to
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represent the true displacement distribution as close as possible and should
have certain properties, known as “convergence criteria”’. These are conditions
to guarantee that exact answers, within the approximation made, will be
approached as more and more elements are used to model the arbitrary

structure. These criteria are discussed next.

A- Rigid-Body M odes

The approximation function should allow for rigid-body displacement
and for a state of constant strain within the element. For example, the
one-dimensional displacement function u=a, +a, x satisfies this
criterion because the constant (&) alows for rigid body displacement
(constant motion of the body without straining) while the term (a; X)
allows for a state of constant strain (ex=du/dx=a,). This simple
polynomial is then said to be “complete” and is used for the one-
dimensional bar element. Completeness of the chosen displacement
function is a necessary condition for convergence to the exact values of
displacements and stresses [15], [35]. The inclusion of rigid body modes
Is necessary for equilibrium of the nodal forces and moments and hence
the satisfaction of global equilibrium in the structure being analyzed
[21].

B- Congant Strain

In order for the solution to converge to the actual state of strains, the
approximation function should also allow for a state of constant strain
within the element. The state of the constant strain in the element can
occur if the elements are chosen small enough.

This requirement is obvious for structures subjected to constant strains
because as elements get smaller, nearly constant strain conditions
prevail in them. As the mesh becomes finer, the element strains are

simplified, and in the limit they will approach their constant values.

10
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C- Inter-element Compatibility

The concept of compatibility means that the displacements within the
elements and across the boundaries are continuous. It has been shown
that the use of complete and compatible displacement functions is a
basic guarantee to obtain converging solutions as more elements and
nodes are used (the mesh size is refined).

Note that the above criteria are mathematically included in the statement of
“Functional Completeness”.

1.3.6 Mesh Size Design

The finite element analysis (FEA) uses a complex system of points called
nodes that make up a grid called the mesh. Nodes are assigned at a certain
density throughout the material depending on the anticipated stress levels at
particular areas. Regions that will receive larger amounts of stress usually have
a higher node density than those with little or no stresses.

In order to conduct a finite element anaysis, the structure must be first
idealized into some form of a mesh. Meshing is the procedure of applying a
finite number of elements to the FEA model. The art of a successful application
of the meshing task lies in the combined choice of element types and the
associated mesh size. If the mesh is too coarse, then the solution will not give
correct results. Alternatively, if the mesh is too fine, the computing time and
effort can be out of proportion of the results obtained. A coarse mesh is
sufficient in areas where the stress is relatively constant while a fine mesh is
required where there are high rates of changes of stress and strain. Local mesh
refinement may be used at area of maximum stress states.

To ensure that convergent results of the FEA solution are obtained, the

following modeling guidelines should be considered in the design of the mesh:

11
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A- Number of Degree of Freedom

It is the essence of the finite element method that increasing the total
number of degree of freedom (calculated as the number of nodes times
the number of DoF per node) has the basic influence on the convergence

of the FEA solution towards a true solution.

B- Aspect Ratio

The aspect ratio is defined as the ratio between the longest and shortest
element dimensions. Acceptable ranges for aspect ratio are element and
problem dependent. It is generally known that the accuracy of the
solution deteriorates as larger aspect ratio is used.

The limit of the aspect ratio is affected by the order of the element
displacement function, the numerical integration pattern for stiffness, the
material behavior (linear of nonlinear) and the anticipated solution
pattern for stresses or displacements. Elements with higher-order
displacement functions and higher-order numerical integration are less
sensitive to large aspect ratios. Elements in regions of material non-
linearity are more sensitive to changes in aspect ratio than those in linear
regions. However, fixed numerical limits are given such as 3:1 for
stresses and 10:1 for deflections[9].

C- Element Distortions (Skewing)

Distortions of elements or their out-of-plane warping are important
considerations. Skewing is usually defined as the variation of element
vertex angles from 90° for quadrilaterals and from 60° for triangles.
Warping occurs when all the nodes of three-dimensional plates or shells
do not lie on the same plane or when the nodes on a single face of a
solid deviate from a single plane [9]. These concepts are illustrated in
Figure 1-1 below.

12
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Figure 1-1: Skewed And War ped Elements (Poor Shaped)

1.4 EINITE ELEMENT APPLICATIONS OF TWO-DIMENSIONAL
STRUCTURES

The finite element solution of two-dimensional structures is made by dividing
the structure into a mesh of elements, mainly triangular and/or rectangular
elements. There are two main types of elements; the basic elements are those
having only corner nodes such as the constants strain triangular element (CST)
and the bilinear rectangular element (BRE). The more advanced elements are
those who have additional mid-side nodes such as the linear strain triangular
element (LST) and the (quadratic iso-parametric element). The use of mid-side
nodes allows quadratic variation of strains and hence faster rate of
convergence. Another advantage of the use of higher order elements is that
curved boundaries of irregularly shaped structures can be approximated more
closely than by the use of simple straight-sided elements. The goa of
developing all these elements is to introduce more degrees of freedom into the
solution and hence get more accurate results as well as better modeling of

various structure boundaries.

13
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The following is a brief description of the basic features of the commonly used

elements for two-dimensional problems[15].

1.4.1 Constant Strain Triangular Element (CST)

The constant strain element is the basic and most common element used for the
solution of plane elasticity problems. This element has two degrees of freedom
(U and V displacements) at each of its three corner nodes, thus it has a total of
six degrees of freedom.

The element is based on independent displacement fields in the x and y
directions, i.e. the constants appearing in the expression for the displacement in
one direction do not appear in the expression for the other direction as follows:
U=a +a,x+ay

V=a,+ta;x+ay

The associated strains for this element are given by

_Tu_
& =——=
Tx
v
Sy ﬂy 9
U,V _
ny_w+ﬂx a3+a5

It is obvious that the values of strain components, and so the stresses, are
constant and do not vary throughout the element, hence came the name. This
means that satisfactory convergence towards the exact solution can only be

ensured by using alarge number of elements [9], [15] & [35].

1.4.2 Liner Strain Triangular Element (L ST)

This element has six nodes, i.e. three corner nodes as well as three mid-side
nodes. This is considered as a development over the CST [9], [15] & [35]. Itis

a higher order triangular element that has twel ve degrees of freedom. Its strains

14
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vary linearly with x and y coordinates. The element is based on independent
displacement fieldsin the x and y directions as follows:

U=a +a,x+a,y+a, x*+axy+a,y’

V=a,+agX+agy+a, X" +axy+a,y’

The associated strains for this element are given by

x =E:az+234 X+agy
Ix
Sy :ﬂﬂ\y/:a9+allX+2a12y
U
ny :l-*-ﬂ:
vy X

m

(8 +3g) +(a; +2a,) X +(28; +ay,)y

1.4.3 Bilinear Rectangular Element (BRE)

This rectangular element is also a basic and common element used for the
solution of plane elasticity problems. This element has two degrees of freedom
(U and V displacements) at each of its four corner nodes, thus it has a total of
eight degrees of freedom. The element is based on independent displacement
fieldsin the x and y directions as follows:

U=a +a,x+a,y+a,xy

V=a,+ta;x+a, y+a; Xy

The associated strains for this element are given by

_U_
€y _7_a2+a4y
Ix

_vV_
g, = =a,+3 X

ny :11-[-[Lyj+11]-[\)::a3+a4 X+a6+asy

The strain components, and hence the stresses, vary linearly in both the x and y
directions, hence come its name. This means that satisfactory convergence
towards the exact solution can be achieved better than the CST mentioned
above [9], [15] & [35].

15
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1.4.4 Quadratic | soparametric Rectangle Element

This element has eight nodes, i.e., four corner nodes as well as four mid-side
nodes. This is considered as a development over the BRE. It is a higher order

rectangular element that has sixteen degrees of freedom [9], [15] & [35].

All of the above-mentioned elements are based on assumed polynomial
displacements. Another approach called the “Strain Based Approach” exists
where assumed polynomia strains are used for deriving the displacement
fields. This new approach is applied in the present work for deriving new
displacement fields of triangular and rectangular elements with three degrees of

freedom pre node, which are the two translations and the in-plane rotation.

1.5 SCOPE OF THE CURRENT THESIS

The purpose of the work presented in this thesis is to derive two new strain-
based elements for two dimensional elasticity problems.

In Chapter 4, a new strain based triangular element having three degrees of
freedom per node is derived. The element is then applied to solve two problems
in plane elasticity, i.e., a deep cantilever beam problem and a simply supported
beam problem. Convergence of the solutions for deflection and stresses is
studied with mesh refinement. The performance of this element is compared to
that of the available displacement based Constant Strain Triangle element, CST
and the exact elasticity solutions.

In Chapter 5, a new strain based rectangular element having three degrees of
freedom per node is derived. The element is then applied to solve the same
problems mentioned above. Also, convergence of the solutions using this
element is studied. The performance of this element is compared to that of the
available displacement based Bilinear Rectangular Element, BRE and the exact
eladticity solutions.

In Chapter 6, the performance of these elements is compared for the results of

deflection and stresses.

16
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2. CHAPTER TWO: STRAIN BASED APPROACH

2.1 INTRODUCTION

A new approach to develop the stiffness matrix of finite elements was proposed
by Ashwell, Sabir and Roberts [1] & [3]. In this approach, polynomial strain
components are assumed. Then the displacement fields are obtained by
integration of strain components according to the relevant strain/displacement
relations. The displacement fields have two essential components. The first
component relates to the zero-strain rigid body mode of displacement while the
second is due to the straining of the element, which can be represented by
assuming independent polynomial terms of strainsin so far asit is alowed by
the compatibility equations governing the changes in the direct stresses and
shear stresses.

A main feature of the strain-based approach is that the resulting components of
displacements are not independent as in the usual displacement approach but
are linked. This linking is present in the exact terms representing rigid body
modes and the approximate terms within the context of the finite element
method representing the straining of the element.

Another feature of this approach is that the method alows the in-plane
components of the displacements to be presented by higher order terms without
increasing the number of degrees of freedom beyond the essential external

degrees of freedom.

17
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22 REASONS FOR DEVELOPMENT OF STRAIN BASED
ELEMENTS

The reasons for seeking an element based on generalized strain functions rather

than displacements were given by the authors who developed this approach [3].

They wrote that:
“Firstly if we wish to minimize the contribution of strain energy to the
potential energy of an element we should seek variations of strain which
are as smooth as possible. This consideration follows from the fact that
the strain energy is calculated from sgquares and products of the strain,
and imposing local variations on an initially smooth distribution without
atering the local mean values increases the value of the squares when
they are integrated over the element.
Secondly the equations relating displacements and generalized strains
are coupled in such away that some strains are functions of more than
one displacement thus making displacements independent of one
another will not make the strains independent of each other. In addition,
since two rules in the convergence criteria and directly concerned with
strains they would be easier to satisfy with assumed strains rather than

displacement functions”.

2.3 HISTORY OF STRAIN BASED APPROACH

2.3.1 Strain Based Curved Elements

The development of displacement fields by the use of the Strain Based
Approach was first applied to curved elements. It was revealed that to obtain
satisfactory converged results, the finite elements based on independent
polynomial displacement functions require the curved structures to be divided

into alarge number of elements.
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Ashwell, Sabir and Roberts [1] & [3] showed that when assumed independent
polynomial displacement fields are used in the analysis of curved elements, the
structure needs to be divided into large number of elements in order to get
satisfactory converged results. However, when assumed independent
polynomial strain fields are used, converged results are obtained even when
less divisions of the structure are used, i.e., the strain based elements showed
faster convergence. Therefore, they continued to develop a new class of ssimple
and efficient finite elements for various types of problems based on assumed
independent strains rather than independent displacement fields.

2.3.2 Strain Based Shell Elements

§ Sabir and Ashwell [1] presented a strain-based rectangular cylindrical
element that has twenty degrees of freedom. It uses only external
geometrical nodal displacements (three linear displacement and two
rotations). It includes all rigid body displacements exactly and satisfies the
constant strain condition in so far as that condition applies to cylindrical
shells.

§ Because the rectangular elements which have been developed can not be
used for modeling shells having irregular curved boundaries, Sabir and
Charchafchi [25] used the strain approach to develop a quadrilateral
element and Sabir used this element to investigate the problem of stress
concentration in cylinders with circular and elliptical holes [24] and the
problem of normally intersecting cylinders [28].

§ Sabir et a also used the strain approach to develop element for arches
deforming in the plane [2] and out of the plane containing the curvature [27]
and took the opportunity to show that higher order strain based elements
can be obtained and aso can be condensed to the only essential external
degrees of freedom. This statical condensation at the element level was

shown to produce further improvement in the convergence of the result.
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In 1985, Sabir and Ramadanhi [26] developed a simple curved finite
element based on shallow shell equations. The element is rectangular in
plane and has three principal curve lines and has the only essential external
degrees of freedom. The element presented is based on assumed strains
rather than displacement fields. The element was tested by applying it to
anaysis of cylindrical [26], spherical [29] and hyperbolic parabolic shell
and it gave high degree of accuracy. Convergence of the results for
deflection as well as stresses was more rapid when compared with other
finite elements based on assumed displacements.

Sabir and El-Erris [8] also developed a new curved strain-based hyperbolic
parabolic shell element similar to that developed by Sabir and Ramadanhi
but having the in plane rotation as a sixth degree of freedom. The results
obtained by the use of this element were shown to converge more rapidly
for avariety of problems even when compared with high order elements.
Sabir and El-Erris developed a curved conical shell finite element suitable
for general bending analysis of conical shells. This element is simple and
possesses all the necessary requirements for less computational effort. The
element has 20 degrees of freedom and satisfies the exact representation of
rigid body modes of displacement. The convergence characteristics of the
element were tested by applying to the bending analysis of conical shells
and it was shown that results of acceptable level of accuracy are obtained
when few elements are used.

Djoudi [6] developed a curved triangular shallow shell element. The
element has only the five essential degrees of freedom at each node and is
based on assumed strains. Several examples of shells with different loading
and boundary conditions were considered and the results obtained were
shown to be satisfactory for most problems.

The strain approach was also used in developing severa strain based shell
elements were developed by Mousa, A. [17] to [22]. These elements include
conical, cylindrical and spherical shell elements. Also, two groups of

doubly curved triangular elements were devel oped, the first group included
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three elements that have five degrees of freedom at each node while the

second group included two elements that have six degrees of freedom at

each node. These elements gave high accuracy of results for displacements

and components of stresses when they were used in complete analysis of a

variety of complex structures such as:

- Complex type of shell roof referred to as fluted roof, with studying the
effect of using stiffening beams on deflections.

- Cylindrical storage tank (made up of cylindrical and conical shell
components) that exhibits large concentration of stresses at the junction
of the two components with studying the effect of using stiffening ring
beams on stresses at the junction.

- Doubly curved hyperbolic parabolic dam with constant or variable
thickness,

- Doubly curved spherical shell roof in the form of afour-corner star with

studying the effect of using stiffening beams on deflections.

2.3.3 Strain Based Two Dimensional Elements

The strain-based approach was further extended by Sabir [23] to the two
dimensional plane elasticity problems. A new family of such elements was
developed. These elements satisfy the requirements of strain-free rigid body
mode of displacement and the compatibility within the element.

§ A triangular in-plane element was developed having the two basic degrees

of freedom. The resulting displacement fields of this element are given by
U=a-ay+ax+ a—zﬁy
Eq. 2-1

V=a,+a,x+a;y+ X

However, this element gave no improvement since its performance was
found to be exactly the same that of the displacement based Constant Strain
Triangular element.
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§ A basic rectangular element was developed and tested by applying it to the
two dimensiona analysis of a beam and plate with holes. Another version
of this element satisfying the above requirements as well as satisfying
equilibrium equations was also developed and tested. These elements have
the two essentia trandlational degrees of freedom at each of the corner
nodes. The resulting displacement fields of this element are given by

ag

2

U:ai'a3y+a4X+a5Xy'a_27y2+ y

a a Eq. 2-2
V=a, + a,X - ?5)(2 +a, y+a, xy+?8x
This element was applied to solution of severa plane elasticity problems
such as a deep cantilever beam and a simply supported beam and was found

to give good results and fast rate of convergence.

§ The displacement fields of the above mentioned rectangular element
developed by Sabir was applied by Sfendji [31] to atriangular element with
four nodes (three corners and a mid-hypotenuse node) and using the statical
condensation of two such triangular elements. Based on the same
rectangular element, he aso derived two new rectangular elements

satisfying the equilibrium equations for plane stress and plane strain

respectively.
The displacement fields of these elements are given by
U:ai-a3y+a4x+a5xy 7(X +y)+a8 alO( y2)
- Eq. 2-3
V=a,+aX - %(X2+y2)+aGY+a7xy+%x ag(—y2- x?)
for plane stress and
U=a-ay+ax+aXxy- a—27(vx2+y2)+§y- %(%xz- y*)
Eq. 2-4

a8 aQ(l-_VyZ_ XZ)

V=a,+aXx - %(X2+vy2)+aﬁy+a7xy+3x

for plane strain.
§ A sector finite element was developed in polar coordinates by Djoudi [6].

This element has three degrees of freedom at each node (two essential
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degrees of freedom and the in-plane rotation). It was applied to the two

analysis of rotationally symmetric curved beam subject to end shear.

24 GENERAL PROCEDURE FOR DERIVING DISPLACEMENT
FIELDS FOR STRAIN-BASED ELEMENTS

The following are general guidelines of deriving displacement fields for strain-

based elements.

§ The displacement fields are required to satisfy the requirement of strain-free
rigid body mode of displacement and straining of the element.

§ To get the first part of the displacement fields corresponding to rigid body
movement of the element, we begin by writing the governing
strain/displacement relationships to the considered element type (2
dimensional, 3 dimensional, flat, curved, etc) and make them equal to zero.

§ The resulting equations are applicable to any type of finite elements of that
type regardless of the total number of degrees of freedom per node.

§ Depending on the number of nodes and the number of degrees of freedom
per node in the considered element, it is generally essential that the total
number of degrees of freedom in the element (and hence the number of
constants used in defining the displacement fields within the eement)
equals the number of nodes times the number of degrees of freedom per
node.

§ Some of the required constants will have already been used to describe the
strain-free rigid body mode of displacement as described above.

§ To get the remaining part of the displacement field, corresponding to the
straining of the element, an expression is assumed for each of the strain
components utilizing the remaining number of constants.

§ The assumed expression should be checked to ensure that if they are twice
differentiated, they satisfy the general compatibility equation of strains.
These expressions should include constant terms corresponding to the state
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of constant strain that ensures the convergence of the solution with mesh
refinement.

The parts of the strain/displacement relationships involving direct strains
are integrated to give expressions of direct displacements (for example U
and V) that will include integration constants.

These expressions are substituted in the equations that link them to other
parts of the strain/displacement relationships (for example, the shear strain
equals the derivatives of U and V). The terms corresponding to each of the
coordinate variables (for example x and y) are collected and separated. This
will give the values of integration constants.

By combining the displacement functions due to the rigid body motion and
those due to the straining of the element, we get the final expression of the
displacement fields.

To compare the strain-based elements with the commonly used
displacement-based elements, it is noted that the displacement fields of the
strain-based element are linked through the terms representing both the
rigid body mode as well as the straining of the element, i.e. most of the
constant terms appear in expression for each of the displacement fields.
After calculating the displacement fields, the element stiffness matrix can

be calculated using the general expression

[K e] = [C'l]T ([Bf -[D]-[B]-d(VOD-[C'l] Eq. 2-5
where the transformation matrix, [C] is calculated by substituting the value
of displacement variables (x, y, etc.) at each node. For example, for
elements with two degrees of freedom per node, [C] is calculated as:

éU, @(x,Y,) U

&, @ (x,.y.) U

é
(?Uz @(Xz’yz)l:I
év, @(x3,Y,) u

, where n is the total number of nodes.

a
u
u
" @(X,, Y, )U
@ (X, V)

C%D%CDH‘D)CD)CD
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Matrix [B] is the strain matrix involving the coordinate variables attached
to each of the constant terms in the expression for the various strain
components. And [D] istherigidity matrix relating the strains to stress and
using the material properties (mainly modulus of elasticity and Poisson’s

ratio in structural solid mechanics and plane elasticity problems).
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3. CHAPTER THREE: COMPUTER PROGRAMS

3.1 USED COMPUTER SOFTWARE

Two main programs were used for the derivation of the new finite elements and
computer implementation of the analysis. A description of each program is

given below.

3.1.1 MathCAD Software

MathCAD is a powerful mathematics software for technical calculations. The
program is used to implement almost all kinds of mathematical operations in an
easy way. The program interface is just like an open page so the user can write
anywhere in this page. The basic feature of the program is that it implements
symbolic mathematics such as simplifying expressions, differentiation,
integration, collecting variables, factoring terms, etc.

In this thesis, MathCAD is used to derive the displacement fields for triangular
and rectangular elements as will be detailed in the next chapters. In this regard,
the strains are assumed then the remaining symbolic analysis are made until the
complete expressions for displacement fields are completed and then the
adequacy of the resulting transformation matrix is checked by applying it to an
arbitrarily oriented element. The use of MathCAD makes it easy to change the

assumptions for strains and see the resulting displacement fields immediately.
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3.1.2 MatLab Software

MatLab is an interactive system for doing numerical computations. The
program got its name from the fact that it is a “Matrix Laboratory” becauseit is
based on matrix manipulations, which produce high efficiency in calculations.
Each entry into the MatLab is treated as a matrix, even if it is a single number.
Computation speed of the program isincredible so it is very suitable to be used
to solve the large number of simultaneous equations resulting from finite
element analyses. For example, the inverse of a very large stiffness matrix is
calculated using one command in contrast to the old programming languages

where that task usually requires a large amount of programming effort.

3.2 IMPLEMENTATION OF THE FEM ANALYSIS

Specia purpose computer programs were developed using MatLab to generate
the mesh data including node coordinates and element connectivity for the
cases of triangular and rectangular elements within each problem domain.
Furthermore, another program was developed to solve the problems using each
element type, i.e. the existing CST and BRE elements as well as the new
triangular and rectangular elements, which will be developed in the following
chapter of thisthesis.

Input data was written in a separate file to organize the data and facilitate the
process of generating the nodal coordinates and element connectivity (mesh
definition). Output of the program was aso received into a separate file. The
output included the input data, nodal forces, nodal displacements and element
stresses at the nodes of each element.

Samples of the used computer programs are shown in “Appendix A” including:

A-1: MatLab Code for Generation of Triangular Mesh in Rectangular Domain

A-2:  MatLab Code for Generation of Rectangular Mesh in Rectangular Domain

A-3: MatLab Code for the Strain Based Triangular Element with In-plane Rotation
(SBTREIR)
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A-4:  MatLab Code for the Strain Based Rectangular Element with In-plane
Rotation (SBREIR)
A-5:  Sample Input File (Rectangular Element)

A-6: Sample Output File (Rectangular Element)

3.2.1 Outline of the Major Program Steps

The following is a summary of the basic stages that one has to go through when

implementing the MatLab developed computer program.

Start

Ask for input file name to read input data
Ask for output file name to write results
Read input file:

Total number of nodes in the structure

wn w wWw W

Total number of elementsin the structure

Node coordinates

Element connectivity data

Material Data: Modulus of elasticity, Poisson’s ratio, thickness

©O O O O O o

Nodal forces
o] Nodal fixation data (boundary conditions)
Plot the structure to ensure correctness of data
Open output file and prepare headings to write results
Write the input data into the output file
Prepare sampling points and weights to be used in numerical integration

Calculate the rigidity matrix for (plane stress/ plane strain)

w W W W W W

Start calculating element stiffness matrix:
o] Read element coordinates
o] Calculate the transformation matrix [C]

o] Assign zero matrix for the element stiffness matrix,
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o] For each of the sampling points:
- Calculate the value shape functions and their derivatives.
- Calculate the strain matrix [B].

- Cdculate the value of the stiffness matrix and accumulate it.

§ Assemble the global stiffness matrix of the structure [GK]
§ Apply boundary conditions to stiffness matrix and nodal force vector { F}
§ Solvefor global nodal displacements{GD} =inv [GK].{F}
§ Write nodal displacements to the output file
§ Prepare headings to write stresses into the output file
§ Start calculating the element stresses:
o] Read element coordinates again
o] Extract element nodal displacements {d} from the global
displacements [GD]
o] Calculate the transformation matrix [C] again
o] Calculate the rigidity matrix [D]
o] Calculate the strain matrix [B]
o] Calculate the element stresses = [D].[B].inv[C].{d}
o] Write element stresses to the output file
§ End

3.2.2 Programs Flow Chart

The following figure shows the usual flow chart of processes involved in the

implementation of the finite element analysis.
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START
L Pre-Processing
Read Input Data Stage
Geometry — Loading { F}
Material Properties
Supporting Conditions
Stiffness M atrix Evaluation
Requir ements > Evaluate individua
Shape Functions element siffnessMatrix, k
Displacement Fields
Trangformation Matrix
Strain Matrix l
Rigidity Matrix Assembly »
Assemble overall Processing
Stage

giffness matrix
of the gructure, GK

'

Boundary Condition
Apply boundary
Condition to GK and { F}

'

Solution
Solve for global displacements

{F} = [GK] {GD}

:

Evaluate Stresses

Plot Stresses  |¢——| Write Displacements and Post-Pr ocessing
(If required) Stresses to Output File Stage
END

Figure 3-1: Finite Element Analysis Flow Chart
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4. CHAPTER FOUR: DEVELOPMENT OF NEW STRAIN-BASED
TRIANGULAR ELEMENT

4.1 INTRODUCTION

In this chapter, the strain-based approach is extended to investigate the ability
of deriving displacement fields for a new strain based triangular element with
the inclusion of the third degree of freedom at each node, which is the in-plane
rotation (also called drilling degree of freedom).

The performance of the new triangular element is investigated by applying it to
the solution of two common plane elasticity problems. These problems are: the
problem of a plane deep cantilever beam fixed at one end and loaded by a point
load at the free end and the problem of a simply supported beam loaded at the
mid-span by a point load.

The results obtained by the developed triangular strain based element are
compared to those given by the well known Constant Strain Triangle (CST)

and the analytical solutions for deflection and stresses as detailed below.

4.2 DERIVATION OF DISPLACEMENT FIELDS OF NEW
TRIANGULAR ELEMENT WITH IN-PLANE ROTATION

The following outlines the assumptions and steps to derive the new strain-

based triangular element.

§ The new triangular element has three corner nodes with three degrees of
freedom at each node as shown in the figure below.

§ The displacement fields must satisfy the requirement of strain-free rigid

body mode of displacement and straining of the element.
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v
A(y )
(X2,y2)
(Uz,Vz,f 2)
(X3,y3)
(uz,vs,f3)
(X1,y1)
(U1,V1,f 1)
(x,u)
>
Figure 4-1: Coordinates and Node Numbering for Triangular Element with 3 DOF per

node
§ To get the first part of the displacement fields for rigid-body mode (U, and

V1), we begin by writing the strain/displacement relationships for plane
elasticity and make them equal to zero. These relationships are given by:

e = E e = ﬂ rY = E + ﬂ
X ﬂX y ﬂy Xy ﬂy ﬂX Eq 4-1
where

U andV : arethe displacementsin the x and y directions respectively.
e and g, : arethe direct axial strainsin the x and y directions respectively.
Oy . isthe shear strain.

Next these stains are set equal to zero and then integrated, they will give

£ = hzg ===>U,=a +f(y)
Ix
Sy:ﬂ\/lzo ===>V, =a, +f,(x)
Ty
WU WV oy
Ty _Wl-*_ﬂixl =0 ___>f1 (y)+f2 (X)_O

where f,'(y) and f,'(x)are constants that can be taken as
f.'(y)=-a and f,'(xX)=a,

hence,

f,(y) =-a,y and f,(X) =a,X

thus,
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U =a-ay

V, =a, +a, X Eq. 4-2

where

Uand V; : are the displacementsin the x and y directions respectively
corresponding to rigid-body mode of displacement.

a and & : represent the translations of the element in the x and y
directions respectively.

& represent the rigid-body in plane rotation of the element.

It is noted that equations Eg. 4-2 are applicable to any type of two
dimensional plane finite elements regardless of the total number of degrees
of freedom per node.
Depending on the number of nodes and the number of degrees of freedom
per node in the considered element, it is generally essential that the total
number of degrees of freedom in the element (and hence the number of
constants used in defining the displacement fields within the eement)
equals the number of nodes times the number of degrees of freedom per
node.
Three constants have already been defined while the remaining six have to
be used to describe the straining of the element. A first attempt to do so isto
assume that

g, =a,ta.y

g, =@ +a, X Eq. 4-3
Yy =ag X + a y
This arrangement of strains does not contain a constant term in the

expression for vy, and it is expected that it wouldn’t give good solutions,

Also it was found that it leads to a singular displacement transformation
matrix and hence it can’t be used to derive a stiffness matrix.

Several other arrangements were tried to avoid this problem. A good
arrangement that gives non-singular transformation matrix is found to be as

follows:
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2

€, :a4 +a5y+a9—y
4
Sy —a6 +a7X' 8.97 Eq 4-4
2 2
_ X y
ny _a8+a9(X+y)_ a57+a77

§ We observe that, if the terms of this equation are twice differentiated, they
satisfy the general compatibility equation of strains, namely:
ﬂZgX .\ ﬂZSy _ ﬂZYXy

§ The constants a4, & and &g are the terms corresponding to state of constant

strain that ensures the convergence of the solution with mesh refinement.
The constants as, & and a; are the terms corresponding to the strain
behavior.

§ To get the second part of the displacement fields for straining mode (U,

V), wefirst integrate the fist two equations as follows.

2
U, =ax+asxy+a, >0 +()
Eq. 4-6

X2
V,=ay+a, xy- a, 1 +1()

§ To get the functions f(x) and f(y), we substitute their derivatives in the third

eguation then separate the resulting expressions for x and y respectively as

follows:
py =12 TV,
Ty T
%2 yz Eq. 4-7
a8+ag(><+y)-a57+a77=a5><+f'(x)+a7y+f'(y)
a X2 X 30X x?
fX) == +aXx-a,—- ax]dx =a,—+a,(- —- —)+a, —
(=3 +ax- a5~ ax]dx = a7 +ag(- o ) +ay -
N y? YL Y YA LY %
fY)=0—+ay+ta,—-ayldy = a,=+a,(-=- —)+a,—
v) 62 &y +a, <, ,yldy > 7(12 2) 3~

§ Thein-plane rotation can be calculated using the relation:
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@:§(§'ﬂ—y) Eq. 4-9
§ Now, f(x) and f(y) are substituted in U,, V,. By adding the expressions for
U, and V; to U, and V, then calculating the in-plane rotation, the complete

expressions for the displacement fields are obtained as:

3

U=a,- ayy+ax+a xy+a,( -—) +ag(— %)
x> x° x> x°y
V=a, +a3X+a5('7'1_)+a6y+a7xy+3-8§+a9(_'T) Eqg. 4-10

O =a, +ag(-X- §)+a7(y- %)+ag(x_ y- Xy)/2

§ It is noted that we obtained quadratic and cubic terms (X, x°, y* & V°)
without increasing the number of nodes beyond the three corner nodes. This
Is not achieved in the known constant strain triangular element (CST). It is
expected that this increase in the degree of the polynomials will result in
more accurate solutions using this element; as will be shown in the
subsequent sections.

§ Having obtained the displacement fields, the stiffness matrix of the

triangular element can be evaluated using the general expression

[K e] = [C'l]T ([Bf -[D]-[B]-d(VOD-[C'l] Eq. 4-11
where, the transformation matrix [C] is calculated as
eu, @(x,,y,) b
eV, @ (%, y,) U
é a
eF. @(x,y1)
eu, @ (x,, yz)t’J
[cl=8v, @(x,.v,)}
eF @ (Xzi yZ)U
U, @(x,, Ya) i
. @0x,0y,)

&F ; @ (x5, Y5)H

the strain matrix [B] for thiselement is
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0001 vy
e
[B]:gooooo
é 2
0000 -2
é 4

N

y° u

le:J

1 x 0 -=—Uu
2

y? u

0 — 1 x+yq
4 g

and [D] isthe rigidity matrix given by

é v 0 l;l
E < U
pl=———& 1 o4
(1-vo)é 1- vU
£ 0% 2
2 0
and
gL-v v
[D]z#év -v
A+v)(1- 2v) &
gO

for the state of plane stress

0
0 4

0 U for the state of plane strain.

1- 2vu

> H

In the subsequent sections, this element will be caled Strain Based

Triangular Element with In-Plane Rotation, (SBTREIR).

4.3 PROBLEMS CONSIDERD

supported beam problem as detailed below.

4.4 DEEP CANTILEVER BEAM PROBLEM

36

The performance of the new strain based triangular element derived in the

previous section is applied to solve a deep cantilever problem and a ssmply

The first problem is a deegp cantilever beam loaded by a point load at the free
end. The beam have length L=10m, height H=4m, and thickness t=0.0625m.
The material properties. modulus of elasticity and Poisson’s ratio are taken as
E=100,000 KPa and n=0.20 respectively. The point load at the free end of the
beam is taken as P =100 KN. In order to achieve full fixity at the built-in end of
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the cantilever beam, all the nodes occurring at that end are assumed to be
restrained in the x and y directions as well as the in-plane rotation. Dimension
and locations of the investigated points within the cantilever beam are shown in
Figure 4-2 below.

h
P B \
- h
h
h
h
h
___q'.A_\ ....................... _.C_ ......................... N H=4m
h
h
h
\ b
h
t !
< L =10m

Figure 4-2: Dimensions and L ocations of Considered Points for the Deep Cantilever
Beam

4.4.1 Used Mesn Size

Several mesh sizes were used in the solution of the problem with increasing the
total number of triangular elements. The adopted aspect ratio is 1:1 in amost
all cases. The following table shows the number of elements, number of nodes

and the aspect ratio of each mesh size.

Table 4-1: Mesh Size and Aspect Ratio of the Deep Cantilever Beam Using Triangular

Elements
Elementsin Short Elementsin Lon
Side (L=4m) Sdo(Lotom | Aspect | Mesh Total no.of | Tota
. . . . . . riangular | no. of
No. Dimension No. Dimension Ratio Size Elements Nodes
(m) (m)
2 2.000 5 2.000 1:1 2x5 20 18
4 1.000 10 1.000 1:1 4x10 80 55
5 0.800 12 0.833 1:1.042 | 5x12 120 78
6 0.667 15 0.667 1:1 6x15 180 112
8 0.500 20 0.500 1:1 8x20 320 189

A sample mesh sizeisillustrated in the figure below.
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125 B

25

2B KN

2k

125

Figure 4-3: Sample Triangular Mesh of the Degp Cantilever Beam Problem

4.4.2 Analytical Solution

Based on the given geometry and material properties, the analytical solution for
deflection and stresses at the specified points are calculated as follows:
§ Vertical deflection at the free end, point “A”=1.105 mm.
§ Bending stress at middle of upper face, point “B”’= 3000 K Pa.
§ Shear stress at middle of centerline, point “C”= 600 KPa.
§ In-Planerotation at the free end, point “A”= 0.156 rad.

4.4.3 Convergence Results

The problem was solved using the developed computer program (described in
Chapter 3 and Annex A) for each of the mesh sizes listed in Table 4-1 above.
Convergence of the overall pattern of bending stress in the cantilever beam is
shown below for the analytical solution as well as the triangular elements (CST
and SBTREIR) using each mesh size (Red: tension, Blue: compression).

i

| ‘

o

0 1 2 3 4 ] B 7 0 2] 10
Bending Stress Pattern — Analytical Solution
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Figure 4-4: Bending Stress Pattern in the Deep Cantilever Beam Using CST
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Figure 4-5: Bending Stress Pattern in the Degp Cantilever Beam Using SBTREIR
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Table 4-2 shows a summary of the used meshes and results for vertical
deflection, bending stress and shearing stress at the specified points within the
deep cantilever beam as a percentage of the exact solutions for the CST and the
new SBTREIR.

Table 4-2: Results of the Deep Cantilever Beam Problem Using Triangular Elements
(CST and SBTREIR)

Vertical Deflection | Bending Stress | Shearing Stress
Mesh | No.of | No. of at A at B at C

Size |Elements| Nodes

CST |SBTREIR| CST |SBTREIR| CST |SBTREIR

2x5 20 18 57.21% | 71.12% |36.53% | 70.18% |63.17%)| 63.11%
4x 10 80 55 83.45% | 89.44% |67.78% | 87.48% |85.47%| 97.79%
5x 12* 120 78 88.50% | 92.68% | 75.00% | 90.65% |86.83%| 94.73%

6 x 15* 180 112 91.86% | 95.56% |80.17% | 93.18% |93.28%| 99.18%

8x20 320 189 95.29% | 98.25% |86.11% | 96.00% |96.08%| 99.59%

Analytical Solutions 1.105 3000.00 600.00

* Note In the case that any of the required points does not lie on a node, (as in the mesh
sizes of 5x12 and 6x15 in this problem), results of bending stress and/or shearing stress are
averaged from the nearest nodes to the location of the required point.

For the deep cantilever beam problem, we notice that the new triangular
element, SBTREIR gives higher accuracy results than the CST for the cases of
vertical deflection, bending stress and shear stress. For both elements, the
convergence of the solution to the analytical value is ensured as more elements
and nodes are used (mesh refinement).

The overall stress pattern converges to the analytical pattern in the solutions of
the two triangular elements.

Figures 4-6 to 4-9 show graphical comparison between the results obtained by
the SBTREIR element, the CST element and the analytical solutions.
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Vertical Deflection, mnr

1.200

1.000

0.800

0.600

0.400

—— Analytical Solution

0.200 —a— SBTREIR

O. OOO 1 1 1 1 1 1
0 50 100 150 200 250 300 350
No. of Elements

Figure 4-6: Vertical Deflection at “A”, (mm) in the Deep Cantilever Beam Using Triangular Elements
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Vertical Deflection, mnr
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o
—— Analyticad Solution
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Figure 4-7: Bending stress at “B”, (KPa) in the Deep Cantilever Beam Using Triangular Elements
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Shearing Stress, KPa
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300.00
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100.00

0.00

—— Analytical Solution
—a— SBTREIR
---a--- CST
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350

Figure 4-8: Shearing Stress at “C”, (KPa) in the Deep Cantilever Beam Using Triangular Elements
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In-plane rotation, Rad

0.180

0.160

0.140

0120

0.100 r

R .
0.080

0.040 —— Analytical Solution

0.020 r —— SBTREIR

Om 1 1 1 1 1 1

0 50 100 150 200 250 300
No. of Elements

Figure 4-9: In-Plane Rotation at “A”, (Rad) in the Deep Cantilever Beam Using Triangular Elements
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45 SIMPLY SUPPORTED BEAM PROBLEM

The second problem used to test the performance of the new element is that of
a ssimply supported beam loaded by a point load at the middle of the upper
surface of the beam. The beam have length, L=4m, height H=1m, and thickness
t=0.5m. The material properties are taken as E=20,000 KPa and n=0.20. The
point load at the midspan end of the beam is taken as P=4.2 KN. The locations
of the investigated points within the simply supported beam are shown in
Figure 4-7 below.

c 0.5m T
e Q- - e = = 0_5 ..... - - H:10
5m
_A +
t <4— L=4m >

Figure 4-10: Dimensions and Considered Points for the Simply Supported Beam

451 Used Mesn Size

The following table shows the number of elements, number of nodes and the

aspect ratio of each mesh size.

Table 4-3: Mesh Size and Aspect Ratio of the Simply Supported Beam Using Triangular

Elements
Elementsin Short ElementsinLon
Side (L=1m) Side (L=4m) ’ Aspect | Mesh | 1ot no.of | Totd
Dimension Dimension | Ratio Size Triangular | no. of
No. No. Elements | Nodes
(m) (m)
1 1.000 4 1.000 1:1 1x4 8 10
2 0.500 8 0.500 1:1 2x8 32 27
3 0.333 12 0.333 1:1 3x12 72 52
4 0.250 16 0.250 1:1 4x 16 128 85
5 0.200 20 0.200 1:1 5x 20 200 126
46
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A sample mesh sizeisillustrated in the figure below.

P

A

>
S

o
&

kesh Size=¢x 8
Mo of Elements = 32
Mo, of Modes =27

Figure4-11: Sample Triangular Mesh of the Simply Supported Beam Problem

4.5.2 Analytical Solution

Based on the given geometry and material properties, the analytical solution for
deflection and stresses at the specified points are calculated as follows:

§8 Vertical deflection at point “A”=6.72 mm.

§ Bending Stress at point “B”= 25.2 KPa.

§ Shear Stress at point “C”= 6.3 KPa.

45.3 Convergence Results

The problem was solved using the developed computer program (described in
Chapter 3 and Annex A) for each of the mesh sizes listed in Table 4-3 above.
Convergence of the overal pattern of bending stress in the simple beam is
shown below for the analytical solution as well as the triangular elements (CST
and SBTREIR) using each mesh size (Red: tension, Blue: compression).
L T—
0.5

0 e —

o 0.5 1 15 2 25 3 35 4
Bending Stress Pattern — Analytical Solution
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Figure 4-12: Bending Stress Pattern in the Simply Supported Beam Using CST
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Figure 4-13: Bending Stress Pattern in the Simply Supported Beam Using SBTREIR

I
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Table 4-4 shows a summary of the used meshes and results for vertical
deflection, bending stress and shearing stress at the specified points within the
simply supported beam as a percentage of the exact solutions for the CST and
the new SBTREIR.

Table 4-4: Results of the Simply Supported Beam Problem Using Triangular Elements
(CST and SBTREIR)

Vertical Deflection| Bending Stress Shearing Stress
Mesh | No.of | No. of at A at B at C

Size |Elements| Nodes
CST |SBTREIR| CST |SBTREIR| CST |SBTREIR

1x4 8 10 31.82% | 50.43% | 12.74% | 78.37% | 63.02% | 65.16%

2x8 32 27 48.33% | 62.62% | 35.63% | 87.38% | 62.06% | 81.76%
3x12* 72 52 57.99% | 69.27% | 53.49% | 91.55% | 69.52% | 87.89%
4x16 128 85 64.08% | 73.74% | 65.04% | 93.81% | 86.35% | 97.44%
5x 20* 200 126 68.24% | 77.02% | 72.34% | 95.28% | 87.30% | 98.54%

Analytical Solutions 6.720 25.20 6.3

* Note: Inthe casethat any of the required points does not lie on a node, (like the mesh sizes
of 3x12 and 5x20 in this problem), results of bending stress and/or shearing stress are
averaged from the nearest nodes to the location of the required point.

Again, for this problem, it is shown that the new triangular element gives
higher accuracy results than the CST for the cases of vertical deflection,
bending stress and shear stress.

The overall stress pattern converges to the analytical pattern in the solutions of

the two triangular elements.

Figures 4-14 to 4-16 show graphical comparison between the results obtained
by each of the SBTREIR and the constant strain element CST and the

analytical solutions.
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Vertical Deflection, mnr
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Figure 4-14: Vertical Deflection at " A", (mm) in the Simply Supported Beam Using Triangular Elements

51

www.manaraa.com




Chapter 4: Development of New Strain-Based Triangular Element

Bending Stress, KPa
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10.00 | i
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500 F —+— SBTREIR
a ~.a--CST
0.00 | | | |
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Figure 4-15: Bending Stressat " B", (KPa) in the Simply Supported Beam Using Triangular Elements
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Shearing Stress, KPa
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Figure 4-16: Shearing Stressat " C", (KPa) in the Simply Supported Beam Using Triangular Elements
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5. CHAPTER FIVE: DEVELOPMENT OF NEW STRAIN-BASED
RECTANGULAR ELEMENT

5.1 INTRODUCTION

In this chapter, the strain-based approach is used to investigate the ability of
deriving displacement fields for a new strain-based rectangular element with
the inclusion of the third degree of freedom at each node, which is the in-plane
rotation, (also called drilling degree of freedom).

The performance of the new rectangular element is investigated by applying it
to the solution of two of the common plane elasticity problems. These
problems include: the problem of a plane deep cantilever beam fixed at one end
and loaded by a point load at the free end and the problem of a simply
supported beam loaded at the mid-span by a point load.

The results obtained by the developed rectangular strain based element are
compared to those given by the well-known Bilinear Rectangular Element,
(BRE) and the analytical values for deflection and stresses as detailed below.

5.2 DERIVATION OF DISPLACEMENT FIELDS FOR NEW
RECTANGULAR ELEMENT WITH IN-PLANE ROTATION

The following outlines the assumptions and steps to derive the new strain-

based rectangular element.

§ The new rectangular element has four corner nodes with three degrees of
freedom at each node as shown in the figure below.

§ The displacement fields are required to satisfy the requirement of strain-free

rigid body mode of displacement and straining of the element.
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A(y,V)

(X3,y3)
(us,vs,fa)
(x2,y2)
(Uz,v2,f2)
(Xa,y4)
(ug,v,f1)
(x,u)
>
Figure5-1: Coordinates and Node Numbering for the Rectangular Element with 3-DOF

per node

§ To get the first part of the displacement fields for rigid-body motion (U,
and V,), we begin by writing the strain/displacement relationships for plane
elasticity and make them equal to zero. These relationships are given by:

= E e = ﬂ 'Y = E + ﬂ
X ﬂX y ﬂy Xy ﬂy ﬂX Eq 5'1
where

U andV : arethe displacementsin the x and y directions respectively.
e and g, : arethe direct axial strainsin the x and y directions respectively.
Oy . isthe shear strain.

Next, these stains are set equal to zero and then integrated:

£ = hzg ===>U,=a +f(y)
Ix
_M_~ .\,
€y _Tyl - ===>V, =a, +f,(x)
WU WV oy
Ty _Wl-*_ﬂixl =0 ___>f1 (y)+f2 (X)_O

where f,'(y) and f,'(x)are constants that can be taken as
f.'(y)=-a and f,'(xX)=a,

hence,

f,(y) =-a,y and f,(X) =a,X

thus,
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U =a-ay

V, =a, +a, X Eq. 52

where

Usand V; : are the displacementsin the x and y directions respectively
corresponding to strain-free rigid body mode of
displacement.

a and & : represent the translations of the element in the x and y
directions respectively.

& represent the rigid-body in plane rotation of the element.

§ Depending on the number of nodes and the number of degrees of freedom
per node in the considered element, it is generally essential that the total
number of degrees of freedom in the element (and hence the number of
constants used in defining the displacement fields within the eement)
equals the number of nodes times the number of degrees of freedom per
node.

§ The displacements within the element have to be defined by twelve
constants (a, through a;,). Three constants have already been defined while
the remaining nine have to be used to describe the deformation straining of
the element.

§ Asafirst tria, these constants are arranged in the following manner:

€ =, taX+agy

€y =8 X+ aAY Eq.53

Vg =80 T3, X T8,y

§ Thisarrangement of strains leads to a singular displacement transformation
matrix. Several other arrangements were tried to avoid this. A good
arrangement that gives non-singular transformation matrix is found to be as

follows:

e, =a, tagy +(agy’ +a,xy’)

X

g, =ag +a,X +(-ax” - a,x%y)

Eq. 54
X2 y2
ny :a10 +a11X+a12y+(_ aS?_ a7?)
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§ We observe that, if the terms of this equation are twice differentiated, they
satisfy the general compatibility equation of strains, namely:

e, + 1TZ‘C‘y - ﬂZny

ﬂy2 ﬂX2 x Ty Eqg. 5-5
The constants a4, as and a,¢ are the terms corresponding to state of constant
strain that ensures the convergence of the solution with mesh refinement. The
constants as, & and a;; are the terms corresponding to linear strain behavior
within the element. The higher order bracketed terms are included to satisfy the
compatibility equation.
The second part of the displacement fields (U,, V») is obtained by following the

same procedure as before; this gives:
2,3
Y +1(y)
yz %3 Eg. 5-6
V2:a6y+a7xy'as Xzy' a4 2 +f(X)

2 X
U,=a,X+a, Xxy+as Xy +a,

=T 1,
fy
X2 y2 Eq. 5-7
a10+a11X+a12y+(' as?' a77):a5X+fl(y)+a7y+fl(X)
X2 X x2 %3 X2
f(X) 6 +as( X- )+a11X]dX :a'loE"'as('?' E)"'au?
2 2 3 2 Eg. 5-8
)= 2 +a,(-y- y7)+a12y]dx =a, 3 +a,(- - ) ra, L
Now, f(x) and f(y) are substituted in U,, V».
2 3 2,,3 2
Uz:a4X+asxy+a7('y_'y—)+asxy2+agxy +a10X+a12y_
2 6 2 2
x2 X3 x3y2 X X2 Eq. 59
szas('?'€)+aey+a7xy' a8x2y—a9 2 +a10§+a11?

By adding the expressions for U; & V; and U, & V, then calculating the in-
plane rotation, the complete expressions for the displacement fields are

obtained as:
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2 3 2,,3 2
U =a - asy+a4X+asxy+a7(' y?' %)+a8xy2 +ag a +a10%+a12y?
\ =&, +3-3X+as(' X_Z' X_3)+aey+a7XY' a8x2y— a9ﬂ+aw§+aﬂx_2
2 6 2 2 2
F=a;+as(-x- X_2)+a7(y+y_2)' 2agXy - §a9X2y2 +a11§_ alZX
4 4 2 2 2
Eq. 5-10

§ It is noted that we obtained quadratic and cubic terms (X, x°, y* & V°)
without increasing the number of nodes beyond the four corner nodes. This
is not achieved in the well-known bilinear rectangular element. It is
expected that this increase in the degree of the polynomials will result in
more accurate solutions using this element as will be shown in the
subsequent sections.

§ Having obtained the displacement fields, the stiffness matrix of the

triangular element can be evaluated using the general expression

[K e] = [C'l]T ( [B]T .[D].[B].d(VO|).[C'1] Eq. 511
where, the transformation matrix, [C] is calculated as

eU, @(x,,y,)u
SV, @(x,,Y,) U

e u
(:eFl @(XlaY1)l;|

c]=

» (D> (D> (D> D> (D

u
a
a
a
o

U, @ (%, Y)Y
&V, @(x,.Y4)

&, Q(x,,Y,)8

the strain matrix [B] for thiselement is

é 0
&0 001 y 0 0 y* xy* 0 0 0Oy
[B]=20 0 0 0 0 1 x -x* -x% 0 0 O
©000-20-X 0o o0 1x
e 2 2 b

(=)

and [D] isthe rigidity matrix given by
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e
E él Y
[D]= ~& 1 0 Uforthe state of plane stress
1-v9)é 1- vuU
£ ° 2
2 U
and
gl.-v Y 0 3
E = p .
[D]=————&v 1-v 0 U forthestate of plane strain.
(1+v)(1- 2v) & 1- 2vU
AO O -
& 2 8

In the subsequent sections, this element will be called: Strain Based
Rectangular Element with In-Plane Rotation, (SBREIR).

5.3 PROBLEMS CONSIDERD

The performance of the new strain-based rectangular element derived in the
previous section is applied to solve the same deep cantilever and simply

supported beam problems as detailed below.

5.4 DEEP CANTILEVER BEAM PROBLEM

The same deep cantilever problem that was described in Section 4.4 was solved
again using the new rectangular element as well as the existing bilinear

rectangular element.

54.1 Used Mesnh Size

Several mesh sizes were used in the solution of the problem with increasing the
total number of rectangular elements. The adopted aspect ratio is 1:1 in amost
al cases. The following table shows the number of elements and number of

nodes and aspect ratio at each mesh size.
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Table 5-1: Mesh Size and Aspect Ratio of the Deep Cantilever Beam Using Rectangular

Elements
Elementsin Short ElementsinLon
Side (L=4m) Sde(L=10m) | Aspect | Mesn | TO@ro.of | Totd
Dimension Dimension | Ratio Size Rectangular | no. of
No. No. Elements | Nodes
(m) (m)
2 2.000 5 2.000 1:1 2x5 10 18
4 1.000 10 1.000 1:1 4x10 40 55
5 0.800 12 0.833 1:1.042 | 5x12 60 78
6 0.667 15 0.667 1:1 6x15 90 112
8 0.500 20 0.500 1:1 8x20 160 189
10 0.400 25 0.400 1:1 10x25 250 286

A sample mesh sizeis aso illustrated in the figure below.

B
125

2h

25 KM

|
25

12.5

Figure 5-2: Sample Rectangular M esh of the Deep Cantilever Beam Problem

5.4.2 Convergence Results

The problem was solved using the developed computer program (described in
Chapter 3 and Annex A) for each of the mesh sizes listed in Table 5-1.
Convergence of the overall pattern of bending stress in the cantilever beam is
shown below for the analytical solution as well as the rectangular elements
(BRE and SBREIR) using each mesh size (Red: tension, Blue: compression).

4  —

0 1 2 3 4 ] B 7 o 4 10
Bending Stress Pattern — Analytical Solution (Repeated)
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BRE Mesh Size 2x5

a 1 2 3 4 5 b 7 g 4 10
BRE Mesh Size 4x10

o 1 2 3 4 ] ] b g 4 10
BRE Mesh Size 5x12

0 1 2 3 4 A b 7 g 9 10
BRE Mesh Size 6x15
Figure 5-3: Bending Stress Pattern in the Degp Cantilever Beam Using BRE
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o 1 2 3 4 ] ] b g 4 10
SBREIR Mesh Size 2x5

a 1 2 3 4 5 b 7 g 4 10
SBREIR Mesh Size 4x10

o 1 2 3 4 ] ] b g 4 10
SBREIR Mesh Size 5x12

a 1 2 3 4 5 a] 7 g 9 10
SBREIR Mesh Size 6x15

Figure 5-4: Bending Stress Pattern in the Deep Cantilever Beam Using SBREIR
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Table 5-2 shows a summary of the used meshes and numerical results for
vertical deflection, bending stress and shearing stress at the specified points
within the deep cantilever beam as a percentage of the exact solutions for both
the BRE and the new SBREIR elements.

Table 5-2: Results of the Deep Cantilever Beam Problem Using Rectangular Elements
(BRE and SBREIR)

Vertical Deflection| Bending Stress Shearing Stress
Mesh No. of No. of at A a B at C

Size |Elements| Nodes

BRE |SBREIR| BRE |SBREIR| BRE |SBREIR

2x5 10 18 88.60% | 96.47% | 91.57% | 100.07% | 69.63% | 112.31%
4x10 40 55 96.92% | 99.00% | 98.23% | 100.19% | 86.92% | 96.66%
5x 12* 60 78 97.92% | 99.37% | 98.88% | 100.22% | 94.49% | 92.45%
6 x 15* 90 112 98.73% | 99.55% | 99.43% | 100.07% | 96.38% | 95.81%

8x20 160 189 99.37% | 99.82% | 99.80% | 100.10% | 96.66% | 98.35%

10x 25*| 250 286 99.64% | 99.91% | 99.96% | 100.01% | 98.69% | 101.05%

Analytical Solutions 1.105 3000.00 600.00

* Note: Inthe casethat any of the required points does not lie on anode, (like the mesh sizes
of 5x12, 6x15 and 10x25 in this problem), results of bending stress and/or shearing stress
are averaged from the nearest nodes to the location of the required point.

For the deep cantilever problem, we notice that the new rectangular element
gives higher accuracy results than the BRE for the case of vertical deflection
and bending stress. For the bending stress, its results are very close but dlightly
more than the exact solution. For the shear stress, the results are almost the
same as those obtained by the BRE. Both elements converge to the same values
as the number of elements increases.

The overall stress pattern converges to the analytical pattern in the solutions of
the two rectangular elements.

Figures 5-5 to 5-8 show graphical comparison between the results obtained by
each of the SBREIR, the BRE and the analytical solutions.
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Vertical Deflection, mnr
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1.100
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0.980
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—— Analytical Solution
—a— SBREIR
---8--- BRE

50

100
No. of Elements

150

200

250

Figure 5-5: Vertical Deflection at “A”, (mm) in the Degp Cantilever Beam Using Rectangular Elements
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Bending Stress, KPa

3050

3000

2950

2900

2850

2800

2750

2700

No. of Elements

8 .
...... —
B -PRUETEE
' g
—— Analytical Solution
—=— SBREIR
.--5--- BRE
S0 100 150 200 250

Figure 5-6: Bending Stress at “B”, (KPa) in the Degp Cantilever Beam Using Rectangular Elements

65

www.manaraa.com




Chapter 5: Development of New Strain-Based Rectangular Element

Shearing Stress, KPa

800.00
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100.00

0.00
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—=— SBREIR
---m--- BRE
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Figure5-7: Shearing Stress at “C”, (KPa) in the Deep Cantilever Beam Using Rectangular Elements
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In-plane Rotation, Rac
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Figure 5-8: In-Plane Rotation at “A”, (mm) in the Deep Cantilever Beam Using Rectangular Elements
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55 SIMPLY SUPPORTED BEAM PROBLEM

The same simply supported problem that was described in Section 4.5 was

solved again using the new rectangular element.

551 Used Mesnh Size

The following table shows the number of elements, number of nodes and

aspect ratio for each mesh size.

Table 5-3: Mesh Size and Aspect Ratio of the Simply Supported Beam Using
Rectangular Elements

Elementsin Short Elementsin Lon
Side (L=1m) Sde(L=dm) | Aspect | Mesn | Totdno.of | Totd
Dimension Dimension | Ratio Size Rectangular | no. of
No. No. Elements | Nodes
(m) (m)
1 1.000 4 1.000 1:1 1x4 8 10
2 0.500 8 0.500 1:1 2x8 32 27
3 0.333 12 0.333 1:1 3x12 72 52
4 0.250 16 0.250 1:1 4x 16 128 85
5 0.200 20 0.200 1:1 5x 20 200 126

5.5.2 Convergence Results

The problem was solved using the developed computer program (described in
Chapter 3 and Annex A) using each of the mesh sizeslisted in Table 5-3 above.
Convergence of the overal pattern of bending stress in the simple beam is
shown below for the analytical solution as well as the rectangular elements
(BRE and SBREIR) using each mesh size (Red: tension, Blue: compression).
| T —
0.5

0 e —

0 05 1 18 2 248 3 34a 4
Bending Stress Pattern — Analytical Solution (repeated)
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BRE Mesh Size 1x4
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Figure 5-9: Bending Stress Pattern in the Simply Supported Beam Using BRE
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Figure 5-10: Bending Stress Pattern in the Simply Supported Beam Using SBREIR
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Table 5-4 shows a summary of the used meshes and numerical results for
vertical deflection, bending stress and shearing stress at the specified points
within the simply supported beam as a percentage of the exact solutions for
both the BRE and the new SBREIR elements.

Table 5-4: Results of the Simply Supported Beam Problem Using Rectangular Elements
(BRE and SBREIR)

Vertical Deflection| Bending Stress at |Shearing Stressat C
Mesh | No.of | No. of at A (mm) B (KPa) (KPa)
Size |Elements| Nodes
BRE |SBREIR| BRE |SBREIR| BRE | SBREIR
1x4 4 10 47.77% | 52.23% | 67.86% | 97.78% | 9.52% | 38.25%
2x8 16 27 62.05% | 62.80% | 86.35% | 96.55% | 54.92% | 83.33%
3x 12* 36 52 69.35% | 68.45% | 92.42% | 97.38% | 66.51% | 90.63%
4x16 64 85 73.66% | 72.17% | 95.16% | 97.94% | 86.83% | 100.48%
5x 20* 100 126 | 76.64% | 75.00% | 96.39% | 97.94% | 94.92% | 97.94%
Exact Solutions 6.720 25.20 6.30

* Note: Inthe casethat any of the required points does not lie on a node, (like the mesh sizes
of 3x12 and 5x20 in this problem), results of bending stress and/or shearing stress are
averaged from the nearest nodes to the location of the required point.

Again for this problem, it is shown that the new rectangular element gives
higher accuracy results than the BRE for the cases of bending stress and
shearing stress. For vertical deflection the results are almost the same as those
obtained by the BRE. Both elements converge to the same values as the
number of elements increases.

Figures 5-11 to 5-13 show graphical comparison between the results obtained
by each of the SBREIR, the BRE and the exact analytical solution.
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Vertical Deflection, mnr
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Figure5-11: Vertical Deflection at “A”, (mm) in the Simply Supported Beam Using Rectangular Elements
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Bending Stress, KPa
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Figure 5-12: Bending Stress at “B”, (KPa) in the Simply Supported Beam Using Rectangular Elements
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Shearing Stress, KPa
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Figure 5-13: Shearing Stress at “C”, (KPa) in the Simply Supported Beam Using Rectangular Elements
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6. CHAPTER SIX: COMPARISON OF THE NEW TRIANGULAR
AND RECTANGULAR ELEMENTS

The performance of the new triangular and rectangular elements is now studied
by comparing their results of deflection and stresses for the problems of deep
cantilever beam and simply supported beam that were solved previously. The

results are compared based on the number of nodes for each mesh size.

6.1 SUMMARY AND DISCUSSION OF RESULTS FOR THE DEEP
CANTILEVER BEAM

The following tables show a summary of results obtained for the deep
cantilever beam problem using various triangular and rectangular elements.
Both results of available elements (CST & BRE) and the new elements
(SBTREIR & SBREIR) are included.

Tables 6-1 to 6-4 summarize the results for vertical deflection at point “A”,
bending stress at “B”, shearing stress at point “C” and in-plane rotation at point
“A” respectively. Graphical representations of these results are shown in
Figures 6-1 to 6-4.

Table 6-1: Vertical Deflection at “A” (mm) in the Deep Cantilever Beam from Various

Elements
Triangular Elements Rectangular Elements
Mesh Size [No. of Nodes Tri- Rect-
CST SBTREIR BRE SBREIR
2x5 18 57.19% 71.13% 88.60% 96.47%
4x10 55 83.44% 89.41% 96.92% 99.00%
5x12 78 88.51% 92.67% 97.92% 99.37%
6x15 112 91.86% 95.57% 98.73% 99.55%
8x20 189 95.29% 98.28% 99.37% 99.82%
10x25 286 99.64% 99.91%
Analytical Solution = 1.105
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Table 6-2: Bending Stress at “B” (KPa) in the Deep Cantilever Beam from Various
Elements

. | Triangular Elements Rectangular Elements
Mesh Size INo. of Nod CST | SBTREIR| BRE | SBREIR
2X5 18 3653% | 70.18% | 9157% | 100.07%
%10 55 67.78% | 87.48% | 98.23% | 100.19%
BX12 78 75.00% | 90.66% | 98.88% | 100.22%
6x15 112 80.17% | 93.18% | 99.43% | 100.07%
8x20 189 86.11% | 96.00% | 99.80% | 100.10%
10x25 286 99.96% | 100.01%
Analytical Solution = 3000.00

Table 6-3: Shearing Stressat “C”, (KPa) in the Deep Cantilever Beam from Various
Elements

. 1 Triangular Elements | Rectangular Elements

Mesh Size INo. of Nod CST | SBTREIR| BRE | SBREIR
2X5 18 63.17% | 63.11% | 69.63% | 112.31%
4x10 55 85.47% | 97.79% | 86.92% | 96.66%
BX12 78 86.83% | 94.73% | 94.49% | 92.45%
6x15 112 93.28% | 99.18% | 96.38% | 95.81%
8x20 189 96.08% | 9959% | 96.66% | 98.35%
10x25 286 98.69% | 101.05%

Analytical Solution = 600.00

Table 6-4: In-Plane Rotation at “A”, (KPa) in the Deep Cantilever Beam from New
Elements

. . Triangular Elements | Rectangular Elements

Mesh Size INo. of Nod CST | SBTREIR | BRE SBREIR
2x5 18 72.1% 95.9%
x10 55 88.1% 96.1%
BX12 78 91.4% 96.8%
6x15 112 93.4% 96.4%
8x20 189 95.7% 96.5%
10x 25 286 96.5%

Analytical Solution = 0.156

* Note: CST and BRE do not give the value of in-plane rotation.

§ The CST has the least accurate results for deflection and stresses. The new
triangular element (SBTREIR) gives higher accuracy results than the CST
for the cases of vertical deflection, bending stress and shear stress. This is
attributed to the higher number of degrees of freedom per node and the
guadratic variation of displacement fieldsin the SBTREIR.
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§ The new rectangular element (SBREIR) gives higher accuracy results than
the BRE for the case of vertica deflection and bending stress. This is
attributed to the higher number of degrees of freedom per node and the
guadratic variation of displacement fields in the SBREIR. For the bending
stress, the results are very close but slightly more than the exact solution.
For the shear stress, the results are amost the same as those obtained by the
BRE.

§ Results of al elements are not good when the structure is divided into a
small number of elements (i.e. at course mesh size) as anticipated,
especially for the shearing stress.

§ For al elements, the solution converges to the analytical value as more
elements and nodes are used (mesh refinement). Also, the rate of
convergence slows down as more refinement is made. These are well
known features of the finite element solutions

§ The new strain based elements give the value of in-plane rotation while the
CST and BRE don’t. This is considered as an advantage of the new
elements over the CST and BRE.
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Vertical Deflection, mnr
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Figure 6-1: Vertical Deflection at “A” (mm) in the Deep Cantilever Beam from Various Elements
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Bending Stress, KPa
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Figure 6-2: Bending Stress at “B” (KPa) in the Deep Cantilever Beam from Various Elements
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Shear Stress, KPa
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Figure 6-3: Shearing Stress at “C”, (KPa) in the Deep Cantilever Beam from Various Elements
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In-plane rotation, Rad
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Figure 6-4: In-Plane Rotation at “A”, (Rad) in the Degp Cantilever Beam from the new Elements
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6.2 SUMMARY AND DISCUSSION OF RESULTS FOR THE SIMPLY
SUPPORTED BEAM

The following tables show a summary of results obtained for the simply
supported beam problem using various triangular and rectangular elements.
Both results of available elements (CST & BRE) and the new elements
(SBTREIR & SBREIR) are included.

Tables 6-5 to 6-7 summarize the results for vertical deflection at point “A”,
bending stress at “B” and shearing stress at point “C” respectively. Graphical

representations of these results are shown in Figures 6-5 to 6-7.

Table 6-5: Vertical Deflection at “A” (mm) in the Simply Supported Beam from Various
Elements

. 1 Triangular Elements | Rectangular Elements

Mesh Size INo. of Nod CST | SBTREIR| BRE SBREIR
x4 10 2.14 3.39 3.21 351
2x8 27 3.25 421 417 4.22
3x 12 52 3.90 4.66 4.66 4.60
4% 16 85 431 4.95 4.95 4.85
5x 20 126 459 518 515 5.04

Analytical Solution = 6.72

Table 6-6: Bending Stress at “B” (KPa) in the Simply Supported Beam from Various
Elements

. . Triangular Elements | Rectangular Elements

Mesh Size INo. of Nod CST | SBTREIR| BRE | SBREIR
x4 10 3.21 19.75 17.10 24.64
2x8 27 8.98 22.02 21.76 24.32
3x 12 52 13.48 23.07 23.29 2454
4x16 85 16.39 23.64 23.98 24.68
5x 20 126 18.23 24.01 24.29 24.68

Analytical Solution = 25.20
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Table 6-7: Shearing Stressat “C”, (KPa) in the Simply Supported Beam from Various

Elements
Triangular Elements Rectangular Elements
Mesh Size [No. of Nodes Tri- Rect-
CST SBTREIR BRE SBREIR
1x4 10 3.97 4.10 0.60 241
2x8 27 3.91 5.15 3.46 5.25
3x12 52 4.38 5.54 4.19 571
4x 16 85 5.44 6.14 5.47 6.33
5x 20 126 5.50 6.21 5.98 6.17
Analytical Solution = 6.30

The CST has the least accurate results for deflection and stresses. The new
triangular element (SBTREIR) gives higher accuracy for results than the
CST for the cases of vertical deflection, bending stress and shear stress.
This is attributed to the higher number of degrees of freedom per node and
the quadratic variation of displacement fields in the SBTREIR.

The new triangular element (SBTREIR), the BRE, and the new rectangular
element (SBREIR) give aimost the same results for deflection and bending
stress.

The new rectangular element (SBREIR) gives higher accuracy for results
than the BRE for the case of vertical deflection and bending stress. For the
bending stress, the results are very close to the exact solution. For vertical
deflection the results are almost the same as those obtained by the BRE.
Results of all elements are not good when the structure is divided into a
small number of elements (i.e. at course mesh size) as anticipated,
especially for the shearing stress.

For al elements, the solution converges to the analytical value as more
elements and nodes are used (mesh refinement). Also, the rate of
convergence slows down as more refinement is made. These are well

known features of the finite element solutions
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Figure 6-5: Vertical Deflection at Point “A” (mm) in the Simply Supported Beam from Various Elements
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86

www.manaraa.com




Chapter 7: Conclusions

7. CHAPTER SEVEN: CONCLUSIONSAND
RECOMMENDATIONS

7.1 CONCLUSIONS

Two new strain-based triangular and rectangular finite elements in cartesian
coordinates system, for two dimensiona elasticity problems have been
developed in this thesis. To test the performance of these elements, they have
been applied to solve two common plane elasticity problems: a deep cantilever
beam problem and a ssimply supported beam problem. Results obtained using
the new elements were compared to those of the well-known constant strain
triangular element (CST) and the bilinear rectangular element (BRE). All
results are then compared with the exact elasticity solutions.

It is concluded that

§ The new triangular element (SBTREIR) gives higher accuracy results than
the (CST) for the cases of vertical deflection, bending stress and shear stress
for both of the considered problems.

§ The new rectangular element (SBREIR) gives higher accuracy results than
those of the (CST), (BRE) and (SBTREIR) for vertical deflection and
bending stress in the case of the deep cantilever beam problem. Results for
bending stress are very close to the exact solution while the results for
shearing stress are almost the same as those obtained by the (BRE).

§ Results obtained by (SBREIR, SBTREIR and BRE) are almost the same for
deflection and bending stress in the case of the ssimply supported beam

problem. Their results are of higher accuracy than the results of the (CST).
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7.2 RECOMMENDATIONS

Even though the new strain-based triangular and rectangular elements give
accurate results and compare well to the CST and BRE respectively, it is
recommended that another future research be conducted to compare our
proposed elements to higher order versions of displacement-based elements

such as the linear strain triangle (LST) and the quadratic isoparametric

rectangular element.
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A.1 GENERATION OF TRIANGULAR MESH IN RECTANGULAR
DOMAIN (USING MATLAB)

function [] = Trinesh
% Generate Sinple Triangul ar Mesh

% By Sal ah

% I nput Data: dinmensions & No. of elenents in x & y direction
fprintf('% \n\n', '==========Ceneration of Triangular Mesh========
)

Ix = input('Dinmension in x-direction: ' );

ly = input('Dinmension in y-direction: ' );

nel ex = input('Enter No. of Elenents in x-direction: ' );

neley = input('Enter No. of Elenents in y-direction: ' );

%Cal cul ati ons
%No. of elements and increnent in x & y direction

nnodex = nelex + 1;

nnodey = neley + 1,

dx = I x / nelex;

dy =1y / neley;

% Gener at e Coordi nat es

nel exy = nelex * nel ey*2; %total no. of Triangular elenents
nnodexy = nnodex * nnodey; %total no. of nodes

% zero matrices and vectors
xc=zer os(nnodexy, 1);

yc=zer os(nnodexy, 1) ;
nodedat a=zer os( nnodexy, 3) ;

for row = 1: nnodey
for col = 1: nnodex
nt = (row1)* nnodex + col
xc(nt)= (col -1)*dx;
yc(nt)= (row 1)*dy;
end
end
% conbi ni ng node data into a matri x nodedata=[no., xc, yc]
% and el enent dat a=[ no., 3 nodes]
format short
for i= 1: nnodexy
nodedata(i,1)=i;
nodedata(i, 2)= xc(i);
nodedata(i, 3)= yc(i);

end
for elerow = 1. neley
for elecol = 1: nelex

eleno = (elerow 1)* (nnodex-1) + elecol
nodel = eleno + (elerow1);
node2 = eleno + (elerow);
node3 = node2 + nnodex;
node4 = nodel + nnodex;

el enent dat a( el eno, 1) =el eno;
el enent dat a( el eno, 2) =nodel
el ement dat a( el eno, 3) =node2;
el ement dat a( el eno, 4) =node3;
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el ement dat a( el eno+nel ex
el ement dat a( el eno+nel ex
el ement dat a( el eno+nel ex
el ement dat a( el eno+nel ex
end
end

* % X o

% Pl ot of the structure

figure (1)

for n=1:nel exy
x(1)= xc(el ementdata(n, 2));
x(2)= xc(el ementdata(n, 3));
x(3)= xc(el ementdata(n, 4));
x(4)= x(1);
y(1)= yc(el ementdata(n, 2));
y(2)= yc(el emrentdata(n, 3));

y(3)= yc(el enentdata(n, 4));
y(4)=y(1);
plot (x, y, '-0",
"mar ker f acecol or',
axi s equal
hol d on
end
| eng=I engt h(xc) ;
for i=1:1eng
i str=nunRstr(i);
text (xc(i)+0. 1*dx,
end

"l'inewi dth',
Ibl)

yc(i)+0. 1*dy,

for i=1:1ength (el enentdata)

el ement no=el enent data(i, 1);
ndl=el enentdata((i), 2);
x1=xc(ndl);

yl=yc(ndl);

nd2=el enentdata( (i), 3);
x2=xc(nd2);

y2=yc(nd2);

nd3=el enentdata( (i), 4);
x3=xc(nd3);

y3=yc(nd3);

xx= [x1; x2; x3];

yy= [yl y2; y3];

xaver age=nean( xx) ;

yaver age=nmean(yy);

el nStr = nun@str (el enent no) ;
t ext (xaverage, yaverage
end

nodedat a

el enent dat a
NoCf El enents = nel exy
NoCf Nodes= nnodexy

nel ey, 1) =el eno+nel ex * nel ey;
nel ey, 2) =nodel;
nel ey, 3) =node3;
nel ey, 4) =node4;

0. 05, 'markersize', 1.5,

istr )

elnStr )
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A1.1 Sample Triangular Mesh

| nput
Ix = input('Dinension in x-direction: ' ); 10
ly = input('Dinension in y-direction: ' ); 4
nel ex = input('Enter No. of Elenents in x-direction: ' ); 5
neley = input('Enter No. of Elenents in y-direction: ' ); 2
Resul ts
nodedat a =
\ . .
A A .
s £ .
£ 1 .
° A .
1 \l .
\4 . Y
A A A
q £ A
Y. 1 A
) A A
VY Ve A
VY . ¢
Ve A £
Vo H ¢
1 1 ¢
1% A £
YA Ve £
el ementdata =
) ) A A
A A s q
s s £ Ve
£ £ ° N
° o 1 VY
1 v A Ve
v A q o
A q Ve '
q Ve N 1%
Ve N VY YA
N ) A v
VY A q A
VY s Ve q
Ve £ N Ve
VYo o VY AR
' v Ve VY
1% A o Ve
YA q 1 o
4 Ve 1% '
Y. N YA 1%
NoOYf El enents = \E
NoCf Nodes = YA
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A.2 GENERATION OF RECTANGULAR MESH IN RECTANGULAR
DOMAIN (USING MATLAB)

function [] = recnesh
% Cenerate Sinple Rectangul ar Mesh

% By Sal ah

% I nput Data: dinmensions & No. of elenents in x & y direction
fprintf('% \n\n', '=======Ceneration of Rectanglar Mesh=========");
Ix = input('Dinmension in x-direction: ' );

ly = input('Dinmension in y-direction: ' );

nel ex = input('Enter No. of Elenents in x-direction: ' );

neley = input('Enter No. of Elenents in y-direction: ' );

%Cal cul ati ons
%No. of elements and increnent in x & y direction

nnodex = nelex + 1;
nnodey = neley + 1;
dx = I x / nelex;

dy =1y / neley;

% Gener at e Coordi nat es
nel exy = nelex * nel ey; %total no. of elenents
nnodexy = nnodex * nnodey; %total no. of nodes
% zero matrices and vectors
xc=zer os(nnodexy, 1);
yc=zer os(nnodexy, 1) ;
nodedat a=zer os( nnodexy, 3) ;

for row = 1: nnodey
for col = 1: nnodex
nt = (row1)* nnodex + col
xc(nt)= (col -1)*dx;
yc(nt)= (row 1)*dy;
end
end
% conbi ni ng node data into a matri x nodedata=[no., xc, yc]
% and el enent dat a=[ no., 4 nodes]
for i= 1: nnodexy
nodedata(i,1)=i;
nodedata(i, 2)= xc(i);
nodedata(i, 3)= yc(i);
end
for elerow = 1: neley
for elecol = 1. nelex
el eno (el erow 1)* (nnodex-1) + elecol
nodel eleno + (elerow1);
node2 eleno + (el erow;
node3 node2 + nnodex;
node4 nodel + nnodex;
el ement dat a( el eno, 1) =el eno;
el enent dat a( el eno, 2) =nodel
el ement dat a( el eno, 3) =node2;
el ement dat a( el eno, 4) =node3;
el ement dat a( el eno, 5) =node4;
end
end
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% Pl ot of the structure
figure (1)
plot (xc,yc, '-0','li

newi dth', 0.05,' markersize', 1.5,

i ne
"mar kerfacecolor', 'b')
grid on

axi s equal

el erent dat a

nodedat a

NoCf El enents = nel exy
NoOF Nodes= nnodexy
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A2.1 Sample Rectangular Mesh

| nput
Ix = input('Dimension in x-direction: ' ); 10
ly = input('Dinmension in y-direction: ' ); 4
nel ex = input('Enter No. of Elenents in x-direction: ' ); 5
neley = input('Enter No. of Elenents in y-direction: ' ); 2
Resul ts
el enentdata =
) ) A A v
A A s q A
s s £ Ve q
£ ¢ ° ) Ve
o o 1 'Y AR
1 v A Ve VY
v A q Yo Ve
A q Ve 1 o
q Ve ) 1% 1
Ve ) VY YA 1%
nodedata =
\ . .
A Y .
\ ¢ .
£ 1 .
° A .
1 e .
A4 . Y
A A A
q £ A
Y. 1 A
N A A
VY Ve A
VY . £
Ve A £
Yo £ £
' 1 ¢
1% A £
YA Ve £
NoCX El enents = Ve
NoOf Nodes = YA
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A3MATLAB CODE FOR THE STRAIN BASED TRIANGULAR
ELEMENT WITH IN-PLANE ROTATION (SBTREIR)

function [] = g3b
% New Strain Based Triangular Elenent with In-Plane Rotation
(SBTRI ER)

% No. of Nodes = 3

% No. of DOF per Node = 3

% Total No. of DOF Node 3x3=9

% By Sal ah

% 1) control paraneters

I nFi | eNane=i nput (' Name of Input File (wthout extension):','s");

Qut Fi | eNane=i nput (' Name of Qutput File (with .mextension):','s");
%Pat a i nput
eval (InFileNane);
nnpel = 3;
ndof pn=3;
edof =nnpel *ndof pn;
sdof =nnode* ndof pn;
el k=zer os(edof, edof) ;
iopt=1; %1 for plane stress and 2 for plane strain
ngpt Xi Et =3; % # of Gauss Integration points = 3,4 or 7 for triangles
%) zero natrices and vectors
GF=zer os(sdof, 1) ;
K=zer os(sdof, sdof ) ;
GD=zer os(sdof, 1);
el d=zeros(edof, 1);
stress=zeros(ngpt X Et, 3);
strai n=zeros(ngpt Xi Et, 3);
Brat ri x=zer os( 3, edof);
Dmat ri x=zeros( 3, 3);
nonnect =zer os( nel e, nnpel );
Li nG=zer os(edof, 1) ;
fi x=zeros(sdof, 2);
% Readi ng node data [node No., XC, YC ]
for n=1:nnode
node( n) =n;
xc(n) =nodedat a(n, 2);
yc(n)=nodedat a(n, 3);
end
% Readi ng El enent Dat a
for i=1l:nele
el enent (i ) =el enentdat a(i, 1);
nconnect (i, 1) =el ementdat a(i, 2);
nconnect (i, 2) =el ement dat a(i, 3);
nconnect (i, 3) =el ement dat a(i, 4);
end
% Readi ng Nodal Forces [node No., Fx, Fy, M ]
nf or ce=si ze(forcedata, 1) ;
for i=1:nforce
nno(i)=forcedata(i, 1); % nno = node nunber with force
GF(3*nno(i)-2)=forcedata(i, 2);
GF(3*nno(i)-1)=forcedata(i, 3);
GF(3*nno(i))=forcedata(i,4);
end
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% Readi ng fixation data

nfi x=si ze(fixdata, 1);

for i=1:nfix
nnofi x(i)=fixdata(i,1l); % nnofix=# of node with specified fixation
fix(3*nnofix(i)-2)=fixdata(i, 2);
fix(3*nnofix(i)-1)=fixdata(i, 3);
fix(3*nnofix(i))=fixdata(i,4);

end

fi xeddi sp2=fi nd(fi xdata(:, 2)==1);

I ng2=I engt h(fi xeddi sp2);

for i=1:1ng2
bcdof (i) =fi xdata(fi xeddi sp2(i), 1)*3-2;
bcval (i) =0;

end

fixeddi sp3=find(fixdata(:, 3)==1);

I ng3=I engt h(fi xeddi sp3);

for i=1: Ing3
bcdof (i +I ng2) =fi xdat a(fi xeddi sp3(i), 1)*3-1;
becval (i +l ng2) =0;

end

fi xeddi sp4=find(fixdata(:, 4)==1);

I ng4=I engt h(fi xeddi sp4) ;

for i=1: Ing4
bcdof (i +I ng2+l ng3) =f i xdat a(fi xeddi sp3(i), 1) *3;
becval (i +I ng2+l ng3) =0;

end

bcdof =sort (bcdof) ;

% Pl ot of the structure

figure (1)

for n=1:nele
x(1) = xc(nconnect(n,1));
x(2) = xc(nconnect(n, 2));
x(3)= xc(nconnect(n, 3));
x(4)= x(1);
y(1) = yc(nconnect(n,1));
y(2)= yc(nconnect(n, 2));
y(3)= yc(nconnect (n, 3));

y(4)=y(1);
plot (x,y, '-0','markersize',1.5)
axi s equal
title(' Gaph of the (BB Problen)
hol d on

end

% writing Heading and input to output file

fidl = fopen(QutFil eNane,'w );

fprintf(fidl,'% \n'," --------- <<<<< Node Data >>>>> ----------- "),
fprintf(fidl,'% \t % \t\t % \n', 'Node','[x y-Fixation, Z
rotation]','[x &y Coordinates]');

for i=1:nnode

fprintf(fidl, "% \t % \t % \t %l \t 98.4f \t 9B.4f \n',[i;fix(3*i-
2);Fix(3*i-1);fix(3%i);xc(i);yc(i)]);

end
fprintf(fidl, "\n");
fprintf(fidl,'% \n','------ <<<<< Elenment Data >>>>> --------- "),

fprintf(fidl,'% \t\t\t % \t\t\t \n', "Element', ' Nodes i-j-m
Count er cl ockwi se');
fprintf(fidl, "\n");
for i=1l:nele

fprintf(fidl, "% \t % \t %d \t %d \n', [i; nconnect(i,1);
nconnect (i, 2); nconnect(i,3)]);
end
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fprintf(fidl, "\n");
% sanpl i ng Points and wei ghts
format | ong
[ poi nt s, wei ght s] =Gquad( ngpt Xi Et) ;
[ Dmat ri x] =el mat nt x( enod, noo) ;
for n=1:nele
for i=1:nnpel
nd(i)=nconnect(n,i);
xcoord(i)=xc(nd(i));
ycoord(i)=yc(nd(i));
end
C=trans(xcoord, ycoord);
el k=zer os(edof, edof) ;
% nunerical Intergrtation
for i=1:ngptX Et
Xi val =poi nts(i,1);
Et val =poi nts(i, 2);
wt xy=wei ght s(i);
[ Ns3, pNpXi 3, pNpEt 3] =ShapeDer 3( Xi val , Etval ) ;
[detJac2, Bmat ri x] = JacobBmatri x3 (nnpel, edof, pNpXi 3, pNpEt 3,
Xival, Etval, xcoord,ycoord);
el k=el k+Bmatri x' *Dmat ri x*Bmat ri x*det Jac2*t h*wt xy/ 2;
end
el k= transpose(inv(Q)*el k*inv(CO;
format bank
Li nG=f eel dof ( nd, nnpel , ndof pn) ;
K=assenbl e( XK, el k, Li nG;
end % end of loop for elk and &K

%appl y boundary conditions
[ &K, GF] =appl ybc( &K, G-, bcdof, beval ) ;

%50l ve for d obal Displacenents, GD
GD=i nv( XK) * G-

R L R
fprintf(fidl, "% \n',"------ <<<<< Nodal Di splacenents >>>>> ---');
fprintf(fidl,'% \t % \t % \t % \t % \t % \n', 'Node','--u--

b --V--I1I--RZ--I1 I--X--I1 --y--l)1
for i=1:nnode
fprintf(fidl,'9% \t 98.5f \t 98.5f \t 98.5Ff \t 98.5f \t 9B.5f \t

\n", [i;G(3*-2); G(3*i-1);A(3*i); xc(i); yc(i)]);

end
fprintf(fidl, "\n");
fprintf(fidl,'% \n'," -------- <<<<< El ement Stresses>>>>> ------- "),

fprintf(fidl, '% \t % \t % \t % \t % \t % \n','Elenment',...
'Sigma-x',"' Sigma-y',"' Shear-xy',"'xlocation','ylcoation');

R i
% El enent stress
kk = 1;

for n=1:nele

for i=1:nnpel
nd(i)=nconnect(n,i);
xcoord(i)=xc(nd(i));
ycoord(i)=yc(nd(i));

end

C=trans(xcoord, ycoord);

Li nG=f eel dof ( nd, nnpel , ndof pn) ;

i nt p=0;

for i=1:edof
el d(i)=C(LinQi));

end
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Xivalues = [0 1 0];
Et aval ues =[0 0 1];
% Val ues of Shape Functions at NODES
npoi nts = | engt h( Xi val ues);
for intp=1:npoints
Xi val =Xi val ues (intp);
Et val =Et aval ues (intp);
i nt p=i nt p+1;
[ Ns3, pNpXi 3, pNpEt 3] =ShapeDer 3( Xi val , Etval ) ;
[detJac2, Bmat ri x] = JacobBmatri x3 (nnpel, edof, pNpXi 3, pNpEt 3,
Xi val , Etval , xcoord, ycoord);
% Conpute and store stress and strain
el strain=Bmatrix* inv(C* eld,;
el stress=Dmatrix * Bmatrix* inv(Q* eld,
for i=1:3
strain(intp,i)=elstrain(i);
stress(intp,i)=elstress(i);
stressx(kk,1) = stress(intp,1);
end
x| ocati on=Ns3* xcoord';
yl ocati on=Ns3* ycoord';

xcoor (kk) = xlocation;
ycoor (kk) = ylocati on;
kk=kk+1;

fprintf(fidl,'% \t 9%40.2f \t 940.2f \t %9d0.2f \t 940.4f \t
940. 4f \t\t \n', [n;stress(intp,1); stress(intp,2);
stress(intp,3); xlocation; ylocation]);
end
end
fclose(fidl);

Y%l ot of the structure show ng bending stress

figure (2)

nl =l ength (xcoor);

xl'in = linspace(m n(xcoor), max(xcoor),nl);

ylin = linspace(m n(ycoor), max(ycoor),nl);

[X, Y] = meshgrid(xlin,ylin);

Z = griddata(xcoor,ycoor,stressx, X, Y, ' cubic');

surf (XY, 2);

axi s equal

shadi ng interp;

col or map;

%ol or bar;

vi ew( 0, 90)
L I I e
function [Ns3, pNpXi 3, pNpEt 3] =ShapeDer 3( Xi val , Etval ) ;

%shape functions

Ns3( 1) =1- Xi val - Et val ;

Ns3(2) =Xi val ;

Ns3(3) =Et val ;

%erivatives

pPNpXi 3(1) =-1;

pNpXi 3(2) =1;

pNpXi 3( 3) =0;

PNpEt 3(1) =-1;

pPNpEt 3( 2) =0;

pPNpEt 3( 3) =1;
N I I I e
function

[det Jac2, Brat ri x] =JacobBmat ri x3( nnpel , edof, pNpXi , pNpEt, Xi val , Et val ,
xcoord, ycoord);
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Jac2=zeros(2, 2);

for i=1:nnpel
Jac2(1, 1)=Jac2(1, 1) +pNpXi (i)*xcoord(i);
Jac2(1, 2)=Jac2(1, 2)+pNpXi (i)*ycoord(i);
Jac2(2,1)=Jac2(2, 1) +pNpEt (i) *xcoord(i);
Jac2(2, 2)=Jac2(2, 2) +pNpEt (i) *ycoord(i);

end

det Jac2=det (Jac2);

Ns3( 1) =1- Xi val - Et val ;

Ns3(2) =Xi val ;
Ns3( 3) =Et val
X = Ns3*xcoord'; %x = N1l x1 + N2 x2 + N3 x3
y = Ns3*ycoord'; %y = NL yl + N2 y2 + N3 y3
% Brmatri x BY SALAH ( SBTE)
Bmatrix =[

0,0,0,1,y,0,0,0,y"2/ 4,

0,0,0,0,0,1, x,O,-xA2/4'

0,0,0,0,-x"2/4,0,y"2/ 4,1, (x+y)]; % 3x9]

% Functi on Gguad
function [points, wei ght s] =Cquad( ngpt Xi Et)

% ngpt = nunber of Gauss Sanpling / Integration Points
% poi nts = vector containing |ocations of integration points 1-D
% wei ght s = vector containing |ocations weighting factors 1-D

% initalization
poi nt s=zer os( ngpt Xi Et, 2);
wei ght s=zer os(ngpt Xi Et, 1);
% use long format to capture maxi mum significant figures |nportant
format | ong
% find corresponding integration points
% Intialization
% find corresponding integration points
format | ong
if ngptXi Et ==
poi nts(1, 1)=0. 1666666666667;
poi nts(1, 2)=0. 1666666666667;
poi nts(2, 1) =0. 6666666666667;
poi nts(2, 2)=0. 1666666666667;
poi nts(3, 1) =0. 1666666666667;
poi nt s( 3, 2) =0. 6666666666667;
wei ght s(1) =1/ 3;
wei ght s(2) =1/ 3;
wei ght s(3) =1/ 3;
elseif ngptXi Et ==
poi nts(1,1)=1/3;
poi nts(1, 2) 1/3
poi nts(2, 1) =0.
poi nt s( 2, 2) =0.
poi nts(3,1)=0.
poi nt s( 3, 2) =0.
poi nts(4, 1) =0.
poi nt s( 4, 2) =0.
wei ght s( 1) =-0. 5625
wei ght s(2) =0. 520833;
wei ght s( 3) =0. 520833;
wei ght s(4) =0. 520833;
end

F?“?QI?“?@
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function[ Dmat ri x] =el mat nt x( enod, noo)
Dmatri x=[ 1, noo, O; . ..

noo, 1, 0; . ..

0,0, 0.5*(1-noo) ] *enod/ (1- noo"2);

function [Li nG =f eel dof (nd, nnpel , ndof pn)
k=0;
for i =1:nnpel
start=(nd(i)-1)*ndof pn;
for j= 1:ndof pn
k=k+1;
Li nG k) =start+j;
end

function [ K] =assenbl e( X el k, Li nG
edof =l engt h(Li nG);
for i=1:edof
ii=LinQi);
for j=1:edof
ji=Lindj);
GKOii,jj)=aK(ii,jj)+elk(i,j);
end

function [ K GF] =appl ybc( &K, G-, bcdof , beval )
n=l engt h( bcdof);
sdof =si ze( &XK) ;
for i=1l:n
c=bcdof (i);
for j=1:sdof
X(c,])=0;
&X(j, c)=0;
end
&(c,c)=1;
GF(c)=bcval (i);
end

function [C]= trans(xcoord, ycoord);
C=zeros(9,9);

for j =1:3
il = 3*-2;
i2 = 3%-1,;
i3 = 3*;

x=xcoord(j);
y=ycoord(j);
% Coordi nate Transformation matrix : BY SALAH TRAC
C(il,:)=[1,0,-y,x,x*y, 0, (y*3/12-y"2/ 2),yl 2, (x*y"2/ 4+y"2/ 2)];
C(i2,:)=[0,1,x,0, (-x"2/2-x"3/12),y,x*y, x/ 2, (-y*x"2/ 4+x"2/ 2)];
(i3, :)=[0,0,1,0,(-x-x"2/8),0,(y-y*2/8),0, (x-y-x*y)/2];

end
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A4MATLAB CODE FOR THE STRAIN BASED RECTANGULAR
ELEMENT WITH IN-PLANE ROTATION (SBREIR)

function [] = qg4b
% Strain Based Rectangular Elenent with I n-Plane Rotation (SBREIR)
% No. of Nodes = 4

% No. of DOF per Node = 3

% Total No. of DOF Node 4x3=12

% By Sal ah

% 1) control paraneters

InFileNane = input('Name of Input File (without extension): ','s"' );
QutFil eNane = input('Name of Qutput File (with .mextension): ','s");
%Pat a i nput

eval (InFileNane);

nnpel = 4;

ndof pn=3;

edof =nnpel *ndof pn;
sdof =nnode* ndof pn;
el k=zer os(edof, edof) ;
C=zer os(edof, edof);
iopt=1; %1 for plane stress and 2 for plane strain
ngpt Xi =4; % integ. points give accurate nunerical integration
ngpt Et =4; % integ. points give accurate nunerical integration
ngpt Xi Et =ngpt Xi * ngpt Et ;
%) zero natrices and vectors
GF=zer os(sdof, 1) ;
K=zer os(sdof, sdof ) ;
GD=zer os(sdof, 1);
el d=zeros(edof, 1);
stress=zeros(ngpt X Et, 3);
strai n=zeros(ngpt Xi Et, 3);
Brat ri x=zer os( 3, edof);
Dmat ri x=zeros( 3, 3);
nonnect =zer os( nel e, nnpel );
Li nG=zer os(edof, 1);
fi x=zeros(sdof);
% Readi ng node data [node No., XC, YC ]
for n=1:nnode
node( n) =n;
xc(n) =nodedat a(n, 2);
yc(n)=nodedat a(n, 3);
end
% Readi ng El enent Data
for i=1l:nele
el enent (i) =el enentdata(i, 1);
nconnect (i, 1) =el emrentdat a(i, 2);
nconnect (i, 2) =el ement data(i, 3);
nconnect (i, 3) =el ement dat a(i, 4);
nconnect (i, 4) =el ement dat a(i, 5);
end
% Readi ng Nodal Forces [node No., Fx, Fy ]
nf or ce=si ze(forcedata, 1) ;
for i=1:nforce
nno(i)=forcedata(i, 1); % nno = node nunber with force
GF(3*nno(i)-2)=forcedata(i, 2);
G-(3*nno(i)-1)=forcedata(i, 3);
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GF(3*nno(i))=forcedata(i,4);
end
% Readi ng fixation data
nfi x=si ze(fixdata, 1);
for i=1:nfix
nnofi x(i)=fixdata(i, 1); % nnofix = nunber of node with
specified fixation
fix(3*nnofix(i)-2)=fixdata(i, 2);
fix(3*nnofix(i)-1)=fixdata(i, 3);
fix(3*nnofix(i))=fixdata(i,4);
end
fi xeddi sp2=fi nd(fixdata(:, 2)==1);
I ng2=I engt h( fi xeddi sp2);
for i=1:1ng2
bcdof (i) =fi xdata(fi xeddi sp2(i), 1)*3-2;
bcval (i) =0;
end
fixeddi sp3=find(fixdata(:, 3)==1);
I ng3=I engt h( fi xeddi sp3);
for i=1: Ing3
bcdof (i +I ng2) =fi xdat a(fi xeddi sp3(i), 1)*3-1,;
becval (i +l ng2) =0;
end
fi xeddi sp4=find(fixdata(:, 4)==1);
I ng4=I engt h(fi xeddi sp4) ;
for i=1: Ing4
bcdof (i +I ng2+l ng3) =f i xdat a(fi xeddi sp3(i), 1) *3;
becval (i +I ng2+l ng3) =0;
end
bcdof =sort (bcdof) ;
% Pl ot of the structure
figure (1)
for n=1:nele
x(1) = xc(nconnect(n,1));
x(2) = xc(nconnect(n, 2));
x(3)= xc(nconnect(n, 3));
x(4) = xc(nconnect(n, 4));
x(5)= x(1);
y(1) = yc(nconnect(n,1));
y(2)= yc(nconnect(n, 2));
y(3)= yc(nconnect (n, 3));
y(4)= yc(nconnect(n, 4));

y(5)=y(1);
plot (x,y, '-0','markersize',61.5)
axi s equal
title(' Gaph of the (4b Problent)
hol d on

end

%witing results to output file
fidl = fopen(QutFileNane,'w);
fprintf(fidl, "% \n'",'------- <<<<< Node Data >>>>> ------------ ")
fprintf(fidl,'% \t % \t\t % \n', 'Node','[x y-Fixation, Z
rotation]','[x &y Coordinates]');
for i=1:nnode
fprintf(fidl, "% \t % \t % \t %l \t 98.4f \t 98. 4f
\n' [0 fix(3%i-2);fix(3*i-1);fix(3*i);xc(i);yc(i)]);

end
fprintf(fidl, "\n");
fprintf(fidl,"'% \n',"'------- <<<<< El ement Data >>>>> --------- ")

fprintf(fidl,' 9% \t\t\t 9% \t\t\t \n', 'Element’,' Nodes i-j-mn
Count er cl ockwi se');
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fprintf(fidl, '\n');
for i=1l:nele
fprintf(fidl, "% \t % \t % \t % \t %l
n',[i;nconnect (i, 1); nconnect (i, 2);nconnect (i, 3);nconnect (i, 4)]);
end
fprintf(fidl, '\n');

% sanpl i ng Points and wei ghts
[ poi nt 2, wei ght 2] =Gquad2( ngpt Xi , ngpt Et ) ;
Dnatrlx el mat nt x( enod, noo) ;

for n=1: nel e
for i=1:nnpel
nd(i)=nconnect(n,i);
xcoord(i)=xc(nd(i));
ycoord(i)=yc(nd(i));
end
C=trans(xcoord, ycoord);
el k=zer os( edof, edof) ;
format | ong
for ix=1:ngptXi
Xi val =poi nt 2(i x, 1);
wt x=wei ght 2(i x, 1);
for iy=1:ngptEt
Et val =poi nt 2(i vy, 2);
wty=wei ght 2(ivy, 2);
[ Ns, pNpXi , pNpEt ] =ShapeDer Q4( Xi val , Et val );
[detJac2, Bmat ri x] = JacobBmatri xQ4(nnpel , edof, pNpXi, pNpEt
Xival, Etval, xcoord, ycoord);
el k=el k+Bmatri x' *Dmat ri x*Bmat ri x*det Jac2*t h*wt x*w y;
end
end
el k= transpose(inv(Q))*el k*inv(CO;
format bank
Li nG=f eel dof ( nd, nnpel , ndof pn) ;
K=assenbl e( XK, el k, Li nG);
end % end of loop for elk and &K

%ppl y boundary conditons

[ &K, GF] =appl ybc( &K, G-, becdof, beval ) ;
L I I e
%50l ve for d obal Displacenents, GD

GD=i nv( XK) * G-

e i
fprintf(fidl,"% \n',"----- <<<<< Nodal Di splacements >>>>> ----");
fprlntf(fldl % \t %\t % \t % \t % \t % \n', 'Node','--u--

SeVes e RZ-T X ey )
for i =1: nnode
fprintf(fidl,'% \t 98.5f \t 98.5f \t 98.5f \t 98.5f \t 9B.5f \t

\n", [i;GX(3%1-2); GX(3*i-1); GX(3*i); xc(i); yc(i)]);

end
fprintf(fidl, "\n");
fprintf(fidl,'% \n',"'--------- <<<<< El enment Stresses>>>>> ----');

fprintf(fidl,'% \t % \t % \t % \t % \t % \n','El enent’
'Sigma-x',"' Sigma-y',"' Shear-xy','xlocation','ylcoation');

R i
% El enent stress
kk = 1;

for n=1:nele
for i=1:nnpel
nd(i)=nconnect (n,i);
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xcoord(i)=xc(nd(i));
ycoord(i)=yc(nd(i));
end
C=trans(xcoord, ycoord);
Li nG=f eel dof ( nd, nnpel , ndof pn) ;
for i=1:edof
el d(i)=C(LinQi));
end
Xivalues = [-1 11 -11];
Etavalues =[-1 -1 1 1 ];
% Val ues of Shape Functions at NODES
npoi nts = | engt h( Xi val ues);
for intp=1:npoints
Xi val =Xi val ues (intp);
Et val =Et aval ues (intp);
[ Ns, pNpXi , pNpEt ] =ShapeDer Q4( Xi val , Et val );
[detJac2, Bmat ri x] = JacobBmatri xQ4(nnpel, edof, pNpXi, pNpEt,
Xival, Etval, xcoord,ycoord);
% Conmput e and store stress and strain
el strain=Bmatrix* inv(C* eld,;
el stress=Dmatrix * Bmatrix* inv(Q* eld,;
for i=1:3
strain(intp,i)=elstrain(i);
stress(intp,i)=elstress(i);
stressx(kk,1) = stress(intp,1);
end
x| ocati on=Ns* xcoord';
yl ocati on=Ns* ycoord';

xcoor (kk) = xlocation;
ycoor (kk) = ylocati on;
kk=kk+1;

format short
fprintf(fidl,'% \t %940.2f \t 940.2f \t 2940.2f \t 9%0.4f \t
%40. 4f \t\t \n',...
[n;stress(intp,1); stress(intp,2); stress(intp,3); xlocation;
yl ocation]);
end
end
fclose(fidl);

Y%l ot of the structure show ng bending stress
figure (2)

nl =l ength (xcoor);

xl'in = linspace(m n(xcoor), max(xcoor),nl);
ylin = linspace(m n(ycoor), max(ycoor),nl);
[X,Y] = nmeshgrid(xlin,ylin);

Z = griddata(xcoor,ycoor,stressx, X, Y, ' cubic');
surf (XY, 2);

axi s equal

shadi ng interp;

col or map;

%ol or bar;

vi ew( 0, 90)

function [ NsQ4, pNpXi 4, pNpEt 4] =ShapeDer 4( Xi val , Etval ) ;
%shape functions

Ns4( 1) =0. 25*(1-Xi val ) *(1-Etval);

Ns@4(2) =0. 25*(1+Xi val ) *(1- Etval );

Ns@4(3) =0. 25*(1+Xi val ) *( 1+Et val ) ;

NsQ4(4)=0. 25*(1- Xi val ) *(1+Et val );

109

www.manaraa.com



Appendix A: Used Computer Program Codes

%eri vatives

PNpXi Q4(1)=-0.25*(1-Etval);
PNpXi Q4(2) =0. 25*(1-Etval);
PNpXi Q4(3) =0. 25*(1+Etval);
PNpXi Q4(4) =-0. 25*(1+Etval);

PNpEt Q4( 1) =-0. 25*(1- Xi val );
PNpEt Q4(2) =- 0. 25* (1+Xi val );
PNpEt Q4(3) =0. 25* (1+Xi val );
PNpEt Q4(4) =0. 25*(1- Xi val );

function

[detJac2, Brat ri x] =JacobBmat ri xQ4( nnpel , edof , pNpXi , pNpEt, Xi val , Et val ,

xcoord, ycoord);

Jac2=zeros(2, 2);

for i=1:nnpel
Jac2(1, 1)=Jac2(1, 1) +pNpXi (i) *xcoord(i);
Jac2(1, 2)=Jac2(1, 2)+pNpXi (i)*ycoord(i);
Jac2(2,1)=Jac2(2, 1) +pNpEt (i) *xcoord(i);
Jac2(2, 2)=Jac2(2, 2) +pNpEt (i) *ycoord(i);

end

det Jac2=det (Jac2);

Ns4( 1) =0. 25*(1- Xi val ) *(1-Etval);

Ns@4(2)=0. 25*(1+Xi val ) *(1-Etval);

Ns@4(3) =0. 25*(1+Xi val ) *( 1+Et val ) ;

NsQ4(4)=0. 25*(1- Xi val ) *(1+Et val );

X = Ns@*xcoord'; %x = N1 x1 + N2 x2 + N3 x3 + N4 x4
y = NsU*ycoord'; %y = NL yl + N2y2 + N3 y3 + M y4
%Bmatrix: (SBREIR, BY SALAH)
Bmatrix =[ 0,0,0,1,y,0,0,y"2, x*y"*3,0,0,0;
0,0,0,0,0,1, x,-x"2,-y*x"3,0,0,0;
0,0,0,0,-x"2/2,0,-y*2/2,0,0, 1, x,y] ; 3x12
I
% Functi on Gguadl
function [point1, weight1l] =Gquadl(ngpt)
% ngpt = nunber of Gauss Sanpling / Integration Points
% point1l = vector containing |ocations of integration points 1-D
% wei ght 1 = vector containing |locations weighting factors 1-D

% initalization
poi nt 1=zer os(ngpt, 1);
wei ght 1=zer os(ngpt, 1);
% use long format to capture maxi mum significant figures |nportant
format | ong
% find corresponding integration points
if ngpt==
poi nt 1( 1) =0;
wei ght 1( 1) =0;
el sei f ngpt==2
poi nt 1(1) =-0. 577350269189626;
poi nt 1( 2) =- poi nt 1(1);
wei ght 1( 1) =1;
wei ght 1( 2) =1;
el seif ngpt==
poi nt 1(1) =-0. 774596669241483;
poi nt 1( 2) =0. 0;
poi nt 1( 3) =- poi nt 1(1);
wei ght 1( 1) =0. 555555555555556;
wei ght 1(2) =0. 888888888888889;
wei ght 1( 3) =wei ght 1(1);
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el seif ngpt==4
poi nt 1(1) =-0. 861136311594053;
poi nt 1( 2) =- 0. 339981043584856;
poi nt 1( 3) =- poi nt 1( 2);
poi nt 1(4) =-poi nt 1(1);
wei ght 1( 1) =0. 347854845137454;
wei ght 1(2) =0. 652145154862546;
wei ght 1( 3) =wei ght 1( 2);
wei ght 1( 4) =wei ght 1(1);

el seif ngpt==
poi nt 1( 1) =- 0. 906179845938664;
poi nt 1( 2) =- 0. 538469310105683;
poi nt 1( 3) =0;
poi nt 1( 4) =- poi nt 1( 2);
poi nt 1(5) =- poi nt 1(1);
wei ght 1( 1) =0. 236926885056189;
wei ght 1(2) =0. 478628670499366;
wei ght 1( 3) =0. 568888888888889;
wei ght 1( 4) =wei ght 1( 2);
wei ght 1( 5) =wei ght 1( 1) ;

% unction CGquad 2
function [point2, wei ght 2] =Gguad2( ngpt x, ngpty)

% ngpt x= # of Gauss Sanpling / Integration Points in the x-direction
% ngpty= # of Gauss Sanpling / Integration Points in the y-direction
% poi nt 2 = vector containing |ocations of integration points 2-D
% wei ght 2 = vector containing |locations weighting factors 2-D

if ngptx > ngpty
ngpt =ngpt x;
el se
ngpt =ngpty;
end
% Intialization
poi nt 2=zer os( ngpt, 2);
wei ght 2=zer os( ngpt, 2);
% find corresponding integration points
[ poi nt x, wei ght x] =Gguad1( ngpt x) ;
[ poi nty, wei ght y] =Gquad1(ngpty);
% store the obtained vectors in a 2-D vector
for ix=1:ngptx
poi nt 2(i x, 1) =poi nt x(i X) ;
wei ght 2(i x, 1) =wei ght x(i x);
end
for iy=1:ngpty
poi nt 2(iy, 2)=pointy(iy);
wei ght 2(iy, 2) =wei ghty(iy);
end

function[ Dmat ri x] =el mat nt x( enod, noo)
Dmatri x=[ 1, noo, O; ..

noo, 1, 0; ..

0,0, 0.5*(1-noo)] *enod/ (1- noo"2);

function [Li nG =f eel dof (nd, nnpel , ndof pn)
k=0;
for i =1:nnpel
start=(nd(i)-1)*ndof pn;
for j= 1:ndof pn
k=k+1;
Li nG k) =start+j;
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function [ K] =assenbl e( X, el k, Li nQ
edof =l engt h(Li nG);
for i=1:edof
ii=LinQi);
for j=1:edof
jj=Lindj);
GKOii,jj)=aK(ii,jj)+elk(i,j);

function [ GK, GF] =appl ybc( &K, G-, bcdof, bcval)
n=l engt h( bcdof) ;
sdof =si ze( &K)
for i=1:n
c=bcdof (i);
for j=1:sdof
X(c,])=0;
&X(j, c)=0;
end
X(c,c)=1
GF(c)=bcval (i);
end

function [C] = trans(xcoord, ycoord);
C=zeros(12,12);

for j =1:4
il = 3*%-2;
i2 = 3%-1,;
i3 = 3*;

x=xcoord(j);
y=ycoord(j);

Clil,:)=11,0,-y,x,x*y,0,(-y"3/6-y"2/2),x*y"2, (x"2*y"3)/2,y/ 2, O,
(yr2)/2];
C(i2,:)=10,1,x,0,(-x"3/6-x"2/2),y, x*y, -y*x"2, - (x"3*y"2)/ 2, x/2,
(x~2)/12,0];
C(i3,:)=[0,0,1,0, (-x-x"2/4),0, (y+ty"2/ 4), -2*x*y, - (3*x"2*y"2)/ 2, 0,
x/2, -yl2];
end
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A4.1 Sample Input Filefor New Strain Based Rectangular Element

% I nput for Rectangular Strain Based El enent
% Probl em Deep Cantil ever Beam Loaded at the free end

nel e = 40; %N\el e = Total nunmber of elenents
nnode= 55; 9N\node = Total nunber of nodes in the structure
% Node Dat a: % Enter data for each node here: Node number, X&Y

coordi nat es
nodedata =[

0
1
2
3
4
5
6
7
8
9
0
0
1
2
3
4
5
6
7
8
9
0
0
1
2
26 3
4
5
6
7
8
9
0
0
1
2
3
4
5
6
7
8
9
0
0
1
2
3
4
5

(I

PRERRARLLOWWWWWWWWWNNNNNMNNNNNNNRRERRRERERRRRROOORRRRRCCR
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each El ement:
nodes (countercl ockw se)

E- modul us and Poi sson’s rati o noo and thickness

51 6 4;
52 7 4;
53 8 4;
54 9 4;
55 10 4];
% El enent Data: Enter data for
% El enent Nunber and four
el ementdata =[
1 1 2 13 12;
2 2 3 14 13;
3 3 4 15 14;
4 4 5 16 15;
5 5 6 17 16;
6 6 7 18 17;
7 7 8 19 18;
8 8 9 20 19;
9 9 10 21 20;
10 10 11 22 21
11 12 13 24 23;
12 13 14 25 24;
13 14 15 26 25;
14 15 16 27 26;
15 16 17 28 27;
16 17 18 29 28;
17 18 19 30 29;
18 19 20 31 30;
19 20 21 32 31
20 21 22 33 32;
21 23 24 35 34;
22 24 25 36 35;
23 25 26 37 36
24 26 27 38 37;
25 27 28 39 38;
26 28 29 40 39
27 29 30 41 40;
28 30 31 42 41;
29 31 32 43 42;
30 32 33 44 43;
31 34 35 46 45;
32 35 36 47 46;
33 36 37 48 47;
34 37 38 49 48;
35 38 39 50 49;
36 39 40 51 50;
37 40 41 52 51
38 41 42 53 52;
39 42 43 54 53;
40 43 44 55 54];
% El enent
enod= 100000; %N n2 NOTE:
noo= 0. 2;
th =0. 0625;

% Appl i ed Forces Data:

forcedata= |
1, 0,-100/8,0;
12, 0, - 100/ 4, 0;
23,0, -100/ 4, 0;
34, 0, - 100/ 4, 0;
45,0,-100/8,0 1;

Node Nunber,
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% Nodal Fi xation Data: % Node Nunber, X-fixation, Y-fixation and Z

rotation
% (1 fixed & 0 not fixed)

fixdata= [
11,1,
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A4.2 Sample Output Filefor New Strain Based Rectangular Element

% I nput for Rectangular Strain Based Element with In-Plane Rotation
% Probl em Deep Cantil ever Beam Loaded at the free end

---------------- <<<<< Nodal Displacenents >>>>> -------

Node --U-- --V-- --RZ-- --X-- --y--
1 0.3039 -1.1007 0.1661 0.0000 0.0000
2 0.2985 -0.9365 0.1569 1.0000 0.0000
3 0.2887 -0.7813 0.1517 2.0000 0.0000
22 0.0000 0.0000 0.0000 10.0000 1.0000
23 0.0001 -1.0937 0.1499 0.0000 2.0000
24 0.0001 -0.9357 0.1502 1.0000 2.0000
54 -0.0572 -0.0269 0.0340 9.0000 4.0000
55 0.0000 0.0000 0.0000 10.0000 4.0000

---------------- <<<<< El enent Stresses>>>>> ----------

Element Sigma-x Sigma-y Shear-xy xlocation ylcoation
1 -468.53 367.59 129.24 0.00 0.00
1 -525.42 83.14 207.25 0.50 0.00
1 -499.03 215.05 182.79 1.00 0.00
3 -725.44 115 431.1 2.50 1.00
3 -738.07 41.63 408.61 2.00 1.00
35 2753.26 -31.96 62.38 5.00 4.00
36 3258.37 106.95 63.44 5.00 4.00
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