
www.manaraa.com

The Islamic University – Gaza 
Postgraduate Deanship 
Faulty of Engineering  
Structural Engineering Department 

   غزة–الجامعة الإسلامیة 
  عمادة الدراسات العلیا

  كلیة الھندسة 
 قسم الإنشاءات

 

 
 
 
 

NEW STRAIN-BASED  

TRIANGULAR AND RECTANGULAR FINITE ELEMENTS  

FOR PLANE ELASTICITY PROBLEMS 
 
 
 
 

       
SUBMITTED BY 

ENG. SALAH M. TAYEH 
 

  
SUPERVISED BY 

DR. ATTIA I. MOUSA 
Associate Professor, Dean of Faculty of Engineering 

Islamic University – Gaza 
 
 

A Thesis submitted in partial fulfillment of the requirements  
for the Degree of Master of Science in Civil / Structural Engineering 

 
 

JULY 2003 



www.manaraa.com

 
  

  

  
  
  
  
  
  
  
  
  

  
  

  
  
 

 


     

              
 

 

  
 

  

  صدق االله العظيم
  - ٢٨٦ – الآية سورة البقرة

  



www.manaraa.com

Abstract 
 

 I 

ABSTRACT 

In this thesis, the Finite Element Method of structural analysis is used to 

investigate and compare the performance of several strain-based elements. Two 

new strain-based triangular and rectangular finite elements in Cartesian 

coordinates system, for two dimensional elasticity problems are developed. 

Each of these elements has three degrees of freedom per node. The “Strain 

Based Approach” is used to develop and formulate these two dimensional finite 

elements. In this approach, finite elements are formulated based on assumed 

polynomial strains rather than displacements.  

Two main computer programs are developed to analyze the new finite 

elements. To test the performance of these elements, they are used to solve two 

common plane elasticity problems. The problems considered included are: the 

problem of a plane deep cantilever beam fixed at one end and loaded by a point 

load at the free end; and the problem of a simply supported beam loaded at the 

mid-span by a point load.  

The finite element solutions obtained for these problems are compared with the 

analytical values given by the elasticity solutions. 

Results obtained using the new triangular and rectangular elements are also 

compared to those of the well-known constant strain triangular element (CST) 

and the bilinear rectangular element (BRE) respectively.  

In all cases, convergence curves for deflection at specific points within each 

problem are plotted to show that acceptable levels of accuracy. Furthermore, 

convergence curves for bending stress at points on the upper surface and shear 

stress at points on the neutral axis are plotted; again convergence is ensured. 
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T Thickness of the element 
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V Displacement in the y direction 

φ In-plane rotation 
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[ ]eK  Element stiffness matrix 
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Π  Total Potential Energy 

DoF Degree of Freedom 

CST Constant Strain Triangle  
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SBTREIR Strain-Based Triangular Element with In-plane Rotation 

SBREIR Strain-Based Rectangular Element with In-plane Rotation 
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1. CHAPTER ONE: INTRODUCTION 

1.1 INTRODUCTION 

The conventional analytical approaches to solution of plane elasticity problems 

are based on determining the necessary equations governing the behavior of the 

structure by taking into account equi1ibrium and compatibi1ity within the 

structure as in the methods developed in the theory of elasticity  [4],  [32] & 

 [35]. The solution to these equations exists only for special cases of loading 

and boundary conditions.  Due to the complex nature of the shape of the 

structure, loading pattern, irregularities in geometry or material, the analytical 

solution normal1y becomes difficult and even impossible to solve such 

problems for displacements, stress or strains within the structure. The need for 

some other technique, such as suitable numerical methods for tackling the more 

complex structures with arbitrary shapes, loading and boundary conditions, is 

then essential. 

Several approximate numerical methods have evolved over the years. One of 

the common methods is the Finite Difference scheme in which an 

approximation to the governing equations is used. The solution is formed by 

writing difference equations for a grid points. The solution is improved as more 

points are used. With this technique, some fairly difficult problems can be 

treated, but for example, for problems of irregular geometries or unusual 

specification of boundary conditions, the solution becomes more complex and 

difficult to obtain. On the other hand, the Finite Element Method (FEM), can 

take care of all these complex problems, and hence has become more 

widespread in finding solutions to complex structural and non-structural 

problems. 



www.manaraa.com

Chapter 1: Introduction 
 

2 

The Finite Element Method (FEM), or Finite Element Analysis (FEA), is based 

on the idea of building a complicated object with simple blocks, or, dividing a 

complicated object into small and manageable pieces. Application of this 

simple idea can be found everywhere in everyday life as well as in engineering. 

FEM is a powerful method for the analysis of continuous structures including 

complex geometrical configurations, material properties, or loading. These 

structures are idealized as consisting of one, two or three-dimensional elements 

connected at the nodal points, common edges, or surfaces. An important 

category is the “two dimensional plane elasticity problems”. These problems 

are characterized by the following assumptions:  

- two dimensions are large, the third is small,  

- the structure is plane 

- the loads act parallel to the plane.  

These structures are described by the mid plane and the thickness distribution. 

Because of the special type of loading, the general three-dimensional behavior 

of a continuum can be reduced to two dimensions by the assumption of 

constant distributed stresses or strains throughout the thickness. The English 

term “plate” only reflects the geometry of the structure whereas the German 

term “Scheibe” additionally refers to the fact that only membrane action is 

present with no bending or twisting. The following terms might alternatively be 

used: 

- in-plane loaded plate (plane stress) 

- membrane structure 

- plane stress / strain structure 

The two-dimensional plate elements (that will be studied in this thesis) are 

extremely important for: 

(1) Plane stress analysis which is defined as the state of stress in which the 

normal stress and the shear stresses directed perpendicular to the plane 

are assumed to be zero. This includes problems such as plates with 

holes, fillets or other changes in geometry that result in stress 

concentrations.  
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(2) Plane strain analysis which is defined as the state of strain in which the 

direct and shear strains normal to the x-y plane are assumed to be zero. 

This includes problems such as long underground box culverts 

subjected to uniform load acting constantly along its length, or a dam 

subjected to the hydrostatic horizontal loading along its length  [15]. 

1.2 HISTORY OF FINITE ELEMENT METHOD 

The modern development of the finite element method in the field of structural 

engineering dates back to 1941 and 1943, when its key features were published 

by Courant  [4], Hrenikoff  [10] and McHenry  [15]. The work of Courant is 

particularly significant because of its concern with problems governed by 

equations applicable to structural mechanics and other situations. He proposed 

setting up the solution of stresses in the variational form. Then he introduced 

piecewise interpolation functions (shape functions) over triangular sub-regions 

making the whole region to obtain the approximate numerical solution.  

In 1947, Levy  [13] developed the flexibility method (force method) and in 

1953 he suggested that the use of the displacement method could be a good 

alternative for the analyzing statically redundant aircraft wings  [14]. This 

method became popular only later after the invention of the high-speed 

computers.  

In 1954, Argyris and Kelsey  [12] gave a very general formulation of the 

stiffness matrix method based on the fundamental energy principles of 

elasticity. This illustrated the importance of the energy principles and their role 

in the development of the finite element method.  

In 1956, Turner, Clough, Martin and Topp  [34] presented the first treatment of 

the two dimensional elements. They derived the stiffness matrices for 

triangular and rectangular elements based on assumed displacements and they 

outlined the procedure commonly known as the Direct Stiffness Method for 

assembling the total stiffness matrix of the structure. This is regarded as one of 

the key contributions in the discovery of the finite element method.  
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The technology of finite elements has advanced through a number of indistinct 

phases in the period since the mid 1950’s. The formulation of the triangular and 

rectangular elements for plane stress has motivated the researchers to continue 

and establish element relationships for solids, plates in bending and thin shells.  

In 1960’s, linear strain triangular element was developed  [33]. This element 

has 6 nodes with 2 degrees of freedom per node. The derivation of the stiffness 

matrix for this element was difficult. The isoparametric formulation was then 

developed  [11] in which both the element geometry and displacements are 

defined by the same interpolation functions. This formulation was then applied 

to two and three dimensional stress analysis where higher order triangular and 

rectangular plane elements were developed. Also, brick elements were 

developed for three dimensional stress analysis. Elements created can be non 

rectangular and have curved sides. 

By the early 1970’s, this method was further developed for use in the aerospace 

and nuclear industries where the safety of the structures is critical. Since the 

rapid decline in the cost of computers, FEM has been developed to an 

incredible precision. Currently, there exist commercial finite element packages 

that are capable of solving the most sophisticated problems for static as well as 

dynamic loading, in a wide range of structural as well as non-structural 

applications.  

Before reviewing the available finite element solutions for two dimensional 

structures, a brief introduction to the finite element method is presented 

showing a description of the procedure for obtaining the stiffness matrix of the 

general (triangular or rectangular) plane element.  

 

1.3 PROCEDURE OF THE FINITE ELEMENT METHOD 

In continuum problem of any dimension, the field variable (whether it is   

pressure, temperature, displacement, stress or some other quantity) possesses 

infinite values because it is a function of each generic point in the body or 
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solution region. Consequent1y, the problem is one with an infinite number of 

unknowns. The finite element discretization procedure reduces the problem to 

one of finite numbers of unknowns by dividing the solution region into 

elements and by expressing the unknown field variable in terms of assumed 

approximating function within each element. The approximation functions are 

defined in terms of the values of the field variables at specified points called 

nodes or nodal points. Nodes usually lie on the element boundaries where 

adjacent elements are considered to be connected. The nodal values of the field 

variable and the approximation for the elements completely define the behavior 

of the field variables within the elements. For the finite element representation 

of a problem, the nodal values of the field variables become the new 

unknowns. Once these unknowns are found, the functions define the field 

variable throughout the assemblage of elements. 

Clearly, the nature of the solution and the degree of approximation depend not 

only on the size and the number of the elements used, but also on the selected 

approximation functions. 

An important feature of the finite element method that sets it apart from other 

approximate numerical methods is the ability to formulate solutions for 

individual elements before putting them together to represent the entire 

problem. Another advantage of the finite element method is the variety of ways 

in which one can formulate the properties of individual elements. The most 

common approach to obtaining element properties is called “displacement 

approach” and the method can be summarized as described below. 

 

1.3.1 Idealization of the Structure 

The idealization governs the type of the element that must be used in the 

solution of the structure. A variety of element shapes can be used, and with 

care, different element shapes may be employed in the same solution. Indeed 

when analyzing, for example, an elastic shell that has different types of 
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components such as stiffener beams, it is necessary to use different types of 

elements in the same solution. 

 

1.3.2 Formulation of Element Stiffness Matrix 

The evaluation of the stiffness matrix for a finite element is the most critical 

step in the whole procedure because it controls the accuracy of the 

approximation. This step includes the choice of:  

- The number of nodes and the number of nodal degrees of freedom that 

determines the size of the stiffness matrix. An element may contain 

corner nodes, side nodes and/or interior nodes. The degrees of freedom 

are usual1y referred to the displacements and their first-order partial 

derivatives at a node but very often include second or higher order 

partial derivatives. 

- The theory that determines the stress-strain and strain-displacement 

relationships to be used in deriving the element matrices. 

- The displacement functions (simple polynomial) or interpolation 

functions in terms of the coordinate variable and a number of constants 

(equal to the total number of degrees of freedom in the element). The 

displacement functions are then chosen to represent the variation of the 

displacements within each element. 

By using the principle of virtual work or the principle of minimum potential 

energy, a stiffness matrix relating the nodal forces to the nodal displacements 

can be derived. Hence, the choice of suitable displacement functions is the 

major factor to be considered in deriving element stiffness matrices. 

 

1.3.3 General Procedure for Derivation of Element Stiffness Matrix 

A stiffness matrix expresses the relation between the nodal loads applied to the 

element, and the nodal displacements. Such a relation can be derived from 

consideration of geometry, relations in the theory of elasticity and the 
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conditions of equilibrium  [21]. Thus, if  Δ  is the vector containing the 

displacement functions of the element,  σ is the vector containing the stresses 

and  ε  is the corresponding strains, and if: 

{ } [ ] { }A f Δ =  Eq.   1-1 

where [ ] f  is the matrix containing the coordinate variables (x, y, etc.) 

and A  is the vector of constant terms (a1, a2, … etc.) of the displacement 

function  Δ  respectively, we can apply equation (1-1) to the nodes of the 

element to relate the displacement within the element to its nodal 

displacements then we obtain: 

{ } [ ] { }A C δ =  Eq.   1-2 

From which [ ]  δ  C A  1−=  Eq.   1-3 

where  δ  is the vector containing the nodal degrees of freedom of the element 

and [ ] C is the transformation matrix resulting from substitution the coordinates 

of each nodal point into the [ ] f  matrix. Therefore, by substituting equation (1-

3) into equation (1-1), the latter becomes: 

[ ] [ ]  δ  C    f  Δ 1−=  Eq.   1-4 

Now, we can express the strains by using the fact that the strains are the 

derivatives of the displacements and by using equation (1-4):  

{ } [ ] [ ] { }δ C    B ε 1−=  Eq.   1-5 

where [ ] B  is called the strain matrix and it contains the necessary derivatives 

of [ ] f  corresponding to the strain-displacement relationship. Also from Hook's 

la w, the stresses within the element can be expressed as  

{ } [ ] { }ε   D  σ =  Eq.   1-6 

Thus from (1-6) and (1-5) 

{ } [ ] [ ] [ ] { }δ C    B    D σ 1−=  Eq.   1-7 

where [ ] D  is called the rigidity matrix that contains the material properties. 
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In order to relate the applied nodal loads to the nodal displacements, the nodal 

loads should first be related to the internal stresses, using the conditions of 

equilibrium, and then to the nodal displacements using equations (1-5) & (1-7).  

Using the principle of minimization of the potential energy, we can derive the 

stiffness of the element. The total potential energy, Π , of an element is the 

difference between the strain energy stored by the internal stresses, U , and the 

potential energy of the applied loads Ω ,  

Ω−= UΠ  Eq.   1-8 

An expression for the strain energy may be written as: 

∫∫∫=
vol

T dvol  σ  ε 
2
1U  Eq.   1-9 

Using equations 1-5 and 1-6, we get 

[ ] [ ] [ ][ ][ ]∫ −−=  dvol δ CBDBC δ 
2
1    1TT1T  Eq.   1-10 

while the potential energy of the applied loads Ω  (including the contribution of 

body forces and surface traction forces) is written as  

{ } { }PδΩ T=  Eq.   1-11 

So we have  

{ } [ ] [ ] [ ][ ][ ] { } { } { }Pδδ dvol C BDBCδ
2
1  Π T1TT1T −= ∫ −−  Eq.   1-12 

where  δ  has been taken out of the integral, as it is independent of the general 

x-y coordinates.  Now, by differentiating Π  and equating it to zero, we get 

[ ] [ ] [ ][ ][ ] { } { } 0Pδ dvolC BDBC  
dδ
dΠ 1TT1 =−= ∫ −−   

or, { } [ ] { }δKP e=   

where 

[ ] [ ] [ ] [ ][ ][ ][ ] 1TT1e C dvol  BDBC  K −− ∫=  Eq.   1-13 

is the element stiffness matrix. 

 



www.manaraa.com

Chapter 1: Introduction 
 

9 

1.3.4 Assembly of the Overall Structural Matrix and the Solution Routine 

To obtain a solution for the overall system modeled by a network of elements, 

we must first “assemble” all the elements’ stiffness matrices. In other words, 

we must combine the matrix equations expressing the behavior of the entire 

structure. This is done using the principle of superposition; it is also called the 

“direct stiffness method”. The basis for the assembly procedure stems from the 

facts that:  

- At a node where elements are interconnected, the value of the field 

variable (generated displacements) is the same for each element sharing 

that node so that the structure remains together and no tearing or overlap 

occur anywhere in the structure. 

- Equilibrium is satisfied at each node. i.e. the sum of all the internal 

nodal forces meeting at a node must be equal to the externally applied 

forces at that node.  

Therefore, to implement these two facts a simple computer program can be 

written and used for the assembly of any number of elements. The resulting 

stiffness matrix of the element (and hence that of the total structures) is 

symmetrical and singular matrix. So, the resulting simultaneous equations can 

be solved, after the introduction of the boundary conditions to the specific 

problem to obtain the nodal displacements and these are then used for the 

calculation of the stresses. 

 

1.3.5 Convergence Criteria 

A characteristic of the finite element method is that the results should approach 

the exact values as more and more elements are used. With good displacement 

functions, convergence towards the exact value will be much faster than with 

poor functions, thus resulting in a reduction of the modeling and computing 

time and effort. In order to achieve the convergence towards the exact value of 

the required variables, the displacement functions chosen should try to 
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represent the true displacement distribution as close as possible and should 

have certain properties, known as “convergence criteria”. These are conditions 

to guarantee that exact answers, within the approximation made, will be 

approached as more and more elements are used to model the arbitrary 

structure. These criteria are discussed next. 

 

A- Rigid-Body Modes 

The approximation function should allow for rigid-body displacement 

and for a state of constant strain within the element. For example, the 

one-dimensional displacement function  xaau 21 +=  satisfies this 

criterion because the constant (a1) allows for rigid body displacement 

(constant motion of the body without straining) while the term (a2 x) 

allows for a state of constant strain ( 2a/ == dxduxε ). This simple 

polynomial is then said to be “complete” and is used for the one-

dimensional bar element. Completeness of the chosen displacement 

function is a necessary condition for convergence to the exact values of 

displacements and stresses  [15],  [35]. The inclusion of rigid body modes 

is necessary for equilibrium of the nodal forces and moments and hence 

the satisfaction of global equilibrium in the structure being analyzed 

 [21]. 

 

B- Constant Strain 

In order for the solution to converge to the actual state of strains, the 

approximation function should also allow for a state of constant strain 

within the element. The state of the constant strain in the element can 

occur if the elements are chosen small enough.  

This requirement is obvious for structures subjected to constant strains 

because as elements get smaller, nearly constant strain conditions 

prevail in them. As the mesh becomes finer, the element strains are 

simplified, and in the limit they will approach their constant values.  
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C- Inter-element Compatibi1ity   

The concept of compatibility means that the displacements within the 

elements and across the boundaries are continuous. It has been shown 

that the use of complete and compatible displacement functions is a 

basic guarantee to obtain converging solutions as more elements and 

nodes are used (the mesh size is refined).  

 

Note that the above criteria are mathematically included in the statement of 

“Functional Completeness”. 

 

1.3.6 Mesh Size Design 

The finite element analysis (FEA) uses a complex system of points called 

nodes that make up a grid called the mesh. Nodes are assigned at a certain 

density throughout the material depending on the anticipated stress levels at 

particular areas. Regions that will receive larger amounts of stress usually have 

a higher node density than those with little or no stresses.  

In order to conduct a finite element analysis, the structure must be first 

idealized into some form of a mesh. Meshing is the procedure of applying a 

finite number of elements to the FEA model. The art of a successful application 

of the meshing task lies in the combined choice of element types and the 

associated mesh size. If the mesh is too coarse, then the solution will not give 

correct results. Alternatively, if the mesh is too fine, the computing time and 

effort can be out of proportion of the results obtained. A coarse mesh is 

sufficient in areas where the stress is relatively constant while a fine mesh is 

required where there are high rates of changes of stress and strain. Local mesh 

refinement may be used at area of maximum stress states.  

To ensure that convergent results of the FEA solution are obtained, the 

following modeling guidelines should be considered in the design of the mesh:  
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A- Number of Degree of Freedom  

It is the essence of the finite element method that increasing the total 

number of degree of freedom (calculated as the number of nodes times 

the number of DoF per node) has the basic influence on the convergence 

of the FEA solution towards a true solution. 

 

B- Aspect Ratio 

The aspect ratio is defined as the ratio between the longest and shortest 

element dimensions. Acceptable ranges for aspect ratio are element and 

problem dependent. It is generally known that the accuracy of the 

solution deteriorates as larger aspect ratio is used.  

The limit of the aspect ratio is affected by the order of the element 

displacement function, the numerical integration pattern for stiffness, the 

material behavior (linear of nonlinear) and the anticipated solution 

pattern for stresses or displacements. Elements with higher-order 

displacement functions and higher-order numerical integration are less 

sensitive to large aspect ratios. Elements in regions of material non-

linearity are more sensitive to changes in aspect ratio than those in linear 

regions. However, fixed numerical limits are given such as 3:1 for 

stresses and 10:1 for deflections  [9]. 

 

C- Element Distortions (Skewing) 

Distortions of elements or their out-of-plane warping are important 

considerations. Skewing is usually defined as the variation of element 

vertex angles from 90º for quadrilaterals and from 60º for triangles. 

Warping occurs when all the nodes of three-dimensional plates or shells 

do not lie on the same plane or when the nodes on a single face of a 

solid deviate from a single plane  [9]. These concepts are illustrated in 

Figure  1-1 below. 
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Figure  1-1: Skewed And Warped Elements (Poor Shaped) 

1.4 FINITE ELEMENT APPLICATIONS OF TWO-DIMENSIONAL 

STRUCTURES 

The finite element solution of two-dimensional structures is made by dividing 

the structure into a mesh of elements, mainly triangular and/or rectangular 

elements. There are two main types of elements; the basic elements are those 

having only corner nodes such as the constants strain triangular element (CST) 

and the bilinear rectangular element (BRE). The more advanced elements are 

those who have additional mid-side nodes such as the linear strain triangular 

element (LST) and the (quadratic iso-parametric element). The use of mid-side 

nodes allows quadratic variation of strains and hence faster rate of 

convergence. Another advantage of the use of higher order elements is that 

curved boundaries of irregularly shaped structures can be approximated more 

closely than by the use of simple straight-sided elements. The goal of 

developing all these elements is to introduce more degrees of freedom into the 

solution and hence get more accurate results as well as better modeling of 

various structure boundaries. 
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The following is a brief description of the basic features of the commonly used 

elements for two-dimensional problems  [15]. 

 

1.4.1 Constant Strain Triangular Element (CST) 

The constant strain element is the basic and most common element used for the 

solution of plane elasticity problems. This element has two degrees of freedom 

(U and V displacements) at each of its three corner nodes, thus it has a total of 

six degrees of freedom. 

The element is based on independent displacement fields in the x and y 

directions, i.e. the constants appearing in the expression for the displacement in 

one direction do not appear in the expression for the other direction as follows: 

y a x a a  V
y a x a a  U
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The associated strains for this element are given by  
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It is obvious that the values of strain components, and so the stresses, are 

constant and do not vary throughout the element, hence came the name. This 

means that satisfactory convergence towards the exact solution can only be 

ensured by using a large number of elements  [9],  [15] &  [35]. 

 

1.4.2 Liner Strain Triangular Element (LST)  

This element has six nodes, i.e. three corner nodes as well as three mid-side 

nodes. This is considered as a development over the CST  [9],  [15] &  [35]. It is 

a higher order triangular element that has twelve degrees of freedom. Its strains 



www.manaraa.com

Chapter 1: Introduction 
 

15 

vary linearly with x and y coordinates.  The element is based on independent 

displacement fields in the x and y directions as follows: 

2
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The associated strains for this element are given by  
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1.4.3 Bilinear Rectangular Element (BRE) 

This rectangular element is also a basic and common element used for the 

solution of plane elasticity problems. This element has two degrees of freedom 

(U and V displacements) at each of its four corner nodes, thus it has a total of 

eight degrees of freedom. The element is based on independent displacement 

fields in the x and y directions as follows: 
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The associated strains for this element are given by  
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The strain components, and hence the stresses, vary linearly in both the x and y 

directions, hence come its name. This means that satisfactory convergence 

towards the exact solution can be achieved better than the CST mentioned 

above  [9],  [15] &  [35]. 
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1.4.4 Quadratic Isoparametric Rectangle Element 

This element has eight nodes, i.e., four corner nodes as well as four mid-side 

nodes. This is considered as a development over the BRE. It is a higher order 

rectangular element that has sixteen degrees of freedom  [9],  [15] &  [35].  

 

All of the above-mentioned elements are based on assumed polynomial 

displacements. Another approach called the “Strain Based Approach” exists 

where assumed polynomial strains are used for deriving the displacement 

fields. This new approach is applied in the present work for deriving new 

displacement fields of triangular and rectangular elements with three degrees of 

freedom pre node, which are the two translations and the in-plane rotation. 

1.5 SCOPE OF THE CURRENT THESIS 

The purpose of the work presented in this thesis is to derive two new strain-

based elements for two dimensional elasticity problems.  

In Chapter 4, a new strain based triangular element having three degrees of 

freedom per node is derived. The element is then applied to solve two problems 

in plane elasticity, i.e., a deep cantilever beam problem and a simply supported 

beam problem. Convergence of the solutions for deflection and stresses is 

studied with mesh refinement. The performance of this element is compared to 

that of the available displacement based Constant Strain Triangle element, CST 

and the exact elasticity solutions.  

In Chapter 5, a new strain based rectangular element having three degrees of 

freedom per node is derived. The element is then applied to solve the same 

problems mentioned above. Also, convergence of the solutions using this 

element is studied. The performance of this element is compared to that of the 

available displacement based Bilinear Rectangular Element, BRE and the exact 

elasticity solutions.  

In Chapter 6, the performance of these elements is compared for the results of 

deflection and stresses. 
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2. CHAPTER TWO: STRAIN BASED APPROACH 

2.1 INTRODUCTION 

A new approach to develop the stiffness matrix of finite elements was proposed 

by Ashwell, Sabir and Roberts  [1] &  [3]. In this approach, polynomial strain 

components are assumed. Then the displacement fields are obtained by 

integration of strain components according to the relevant strain/displacement 

relations. The displacement fields have two essential components. The first 

component relates to the zero-strain rigid body mode of displacement while the 

second is due to the straining of the element, which can be represented by 

assuming independent polynomial terms of strains in so far as it is allowed by 

the compatibility equations governing the changes in the direct stresses and 

shear stresses.  

A main feature of the strain-based approach is that the resulting components of 

displacements are not independent as in the usual displacement approach but 

are linked. This linking is present in the exact terms representing rigid body 

modes and the approximate terms within the context of the finite element 

method representing the straining of the element.  

Another feature of this approach is that the method allows the in-plane 

components of the displacements to be presented by higher order terms without 

increasing the number of degrees of freedom beyond the essential external 

degrees of freedom. 
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2.2 REASONS FOR DEVELOPMENT OF STRAIN BASED 

ELEMENTS 

The reasons for seeking an element based on generalized strain functions rather 

than displacements were given by the authors who developed this approach  [3]. 

They wrote that: 

“Firstly if we wish to minimize the contribution of strain energy to the 

potential energy of an element we should seek variations of strain which 

are as smooth as possible. This consideration follows from the fact that 

the strain energy is calculated from squares and products of the strain, 

and imposing local variations on an initially smooth distribution without 

altering the local mean values increases the value of the squares when 

they are integrated over the element. 

Secondly the equations relating displacements and generalized strains 

are coupled in such away that some strains are functions of more than 

one displacement thus making displacements independent of one 

another will not make the strains independent of each other. In addition, 

since two rules in the convergence criteria and directly concerned with 

strains they would be easier to satisfy with assumed strains rather than 

displacement functions”.  

2.3 HISTORY OF STRAIN BASED APPROACH  

2.3.1 Strain Based Curved Elements 

The development of displacement fields by the use of the Strain Based 

Approach was first applied to curved elements. It was revealed that to obtain 

satisfactory converged results, the finite elements based on independent 

polynomial displacement functions require the curved structures to be divided 

into a large number of elements.  
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Ashwell, Sabir and Roberts  [1] &  [3] showed that when assumed independent 

polynomial displacement fields are used in the analysis of curved elements, the 

structure needs to be divided into large number of elements in order to get 

satisfactory converged results. However, when assumed independent 

polynomial strain fields are used, converged results are obtained even when 

less divisions of the structure are used, i.e., the strain based elements showed 

faster convergence. Therefore, they continued to develop a new class of simple 

and efficient finite elements for various types of problems based on assumed 

independent strains rather than independent displacement fields.  

 

2.3.2 Strain Based Shell Elements 

§ Sabir and Ashwell  [1] presented a strain-based rectangular cylindrical 

element that has twenty degrees of freedom. It uses only external 

geometrical nodal displacements (three linear displacement and two 

rotations). It includes all rigid body displacements exactly and satisfies the 

constant strain condition in so far as that condition applies to cylindrical 

shells. 

§ Because the rectangular elements which have been developed can not be 

used for modeling shells having irregular curved boundaries, Sabir and 

Charchafchi  [25] used the strain approach to develop a quadrilateral 

element and Sabir used this element to investigate the problem of stress 

concentration in cylinders with circular and elliptical holes  [24] and the 

problem of normally intersecting cylinders  [28]. 

§ Sabir et al also used the strain approach to develop element for arches 

deforming in the plane  [2] and out of the plane containing the curvature  [27] 

and took the opportunity to show that higher order strain based elements 

can be obtained and also can be condensed to the only essential external 

degrees of freedom. This statical condensation at the element level was 

shown to produce further improvement in the convergence of the result. 
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§ In 1985, Sabir and Ramadanhi  [26] developed a simple curved finite 

element based on shallow shell equations. The element is rectangular in 

plane and has three principal curve lines and has the only essential external 

degrees of freedom. The element presented is based on assumed strains 

rather than displacement fields. The element was tested by applying it to 

analysis of cylindrical  [26], spherical  [29] and hyperbolic parabolic shell 

and it gave high degree of accuracy. Convergence of the results for 

deflection as well as stresses was more rapid when compared with other 

finite elements based on assumed displacements.  

§ Sabir and El-Erris  [8] also developed a new curved strain-based hyperbolic 

parabolic shell element similar to that developed by Sabir and Ramadanhi 

but having the in plane rotation as a sixth degree of freedom. The results 

obtained by the use of this element were shown to converge more rapidly 

for a variety of problems even when compared with high order elements. 

§ Sabir and El-Erris developed a curved conical shell finite element suitable 

for general bending analysis of conical shells. This element is simple and 

possesses all the necessary requirements for less computational effort. The 

element has 20 degrees of freedom and satisfies the exact representation of 

rigid body modes of displacement. The convergence characteristics of the 

element were tested by applying to the bending analysis of conical shells 

and it was shown that results of acceptable level of accuracy are obtained 

when few elements are used. 

§ Djoudi  [6] developed a curved triangular shallow shell element. The 

element has only the five essential degrees of freedom at each node and is 

based on assumed strains. Several examples of shells with different loading 

and boundary conditions were considered and the results obtained were 

shown to be satisfactory for most problems. 

§ The strain approach was also used in developing several strain based shell 

elements were developed by Mousa, A.  [17] to  [22]. These elements include 

conical, cylindrical and spherical shell elements. Also, two groups of 

doubly curved triangular elements were developed, the first group included 
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three elements that have five degrees of freedom at each node while the 

second group included two elements that have six degrees of freedom at 

each node. These elements gave high accuracy of results for displacements 

and components of stresses when they were used in complete analysis of a 

variety of complex structures such as: 

- Complex type of shell roof referred to as fluted roof, with studying the 

effect of using stiffening beams on deflections. 

- Cylindrical storage tank (made up of cylindrical and conical shell 

components) that exhibits large concentration of stresses at the junction 

of the two components with studying the effect of using stiffening ring 

beams on stresses at the junction. 

- Doubly curved hyperbolic parabolic dam with constant or variable 

thickness,  

- Doubly curved spherical shell roof in the form of a four-corner star with 

studying the effect of using stiffening beams on deflections. 

 

2.3.3 Strain Based Two Dimensional Elements 

The strain-based approach was further extended by Sabir  [23] to the two 

dimensional plane elasticity problems. A new family of such elements was 

developed. These elements satisfy the requirements of strain-free rigid body 

mode of displacement and the compatibility within the element.  

§ A triangular in-plane element was developed having the two basic degrees 

of freedom. The resulting displacement fields of this element are given by 

 x
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However, this element gave no improvement since its performance was 

found to be exactly the same that of the displacement based Constant Strain 

Triangular element.  
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§ A basic rectangular element was developed and tested by applying it to the 

two dimensional analysis of a beam and plate with holes. Another version 

of this element satisfying the above requirements as well as satisfying 

equilibrium equations was also developed and tested. These elements have 

the two essential translational degrees of freedom at each of the corner 

nodes. The resulting displacement fields of this element are given by 
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Eq.   2-2 

This element was applied to solution of several plane elasticity problems 

such as a deep cantilever beam and a simply supported beam and was found 

to give good results and fast rate of convergence. 

§ The displacement fields of the above mentioned rectangular element 

developed by Sabir was applied by Sfendji  [31] to a triangular element with 

four nodes (three corners and a mid-hypotenuse node) and using the statical 

condensation of two such triangular elements.  Based on the same 

rectangular element, he also derived two new rectangular elements 

satisfying the equilibrium equations for plane stress and plane strain 

respectively. 

The displacement fields of these elements are given by 
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Eq.   2-3 

for plane stress and  
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Eq.   2-4 

for plane strain. 

§ A sector finite element was developed in polar coordinates by Djoudi  [6]. 

This element has three degrees of freedom at each node (two essential 
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degrees of freedom and the in-plane rotation). It was applied to the two 

analysis of rotationally symmetric curved beam subject to end shear.  

 

2.4 GENERAL PROCEDURE FOR DERIVING DISPLACEMENT 

FIELDS FOR STRAIN-BASED ELEMENTS 

The following are general guidelines of deriving displacement fields for strain-

based elements. 

§ The displacement fields are required to satisfy the requirement of strain-free 

rigid body mode of displacement and straining of the element. 

§ To get the first part of the displacement fields corresponding to rigid body 

movement of the element, we begin by writing the governing 

strain/displacement relationships to the considered element type (2 

dimensional, 3 dimensional, flat, curved, etc) and make them equal to zero.  

§ The resulting equations are applicable to any type of finite elements of that 

type regardless of the total number of degrees of freedom per node. 

§ Depending on the number of nodes and the number of degrees of freedom 

per node in the considered element, it is generally essential that the total 

number of degrees of freedom in the element (and hence the number of 

constants used in defining the displacement fields within the element) 

equals the number of nodes times the number of degrees of freedom per 

node. 

§ Some of the required constants will have already been used to describe the 

strain-free rigid body mode of displacement as described above. 

§ To get the remaining part of the displacement field, corresponding to the 

straining of the element, an expression is assumed for each of the strain 

components utilizing the remaining number of constants.  

§ The assumed expression should be checked to ensure that if they are twice 

differentiated, they satisfy the general compatibility equation of strains. 

These expressions should include constant terms corresponding to the state 



www.manaraa.com

Chapter 2: Strain Based Approach 
 

24 

of constant strain that ensures the convergence of the solution with mesh 

refinement. 

§ The parts of the strain/displacement relationships involving direct strains 

are integrated to give expressions of direct displacements (for example U 

and V) that will include integration constants. 

§ These expressions are substituted in the equations that link them to other 

parts of the strain/displacement relationships (for example, the shear strain 

equals the derivatives of U and V). The terms corresponding to each of the 

coordinate variables (for example x and y) are collected and separated. This 

will give the values of integration constants. 

§ By combining the displacement functions due to the rigid body motion and 

those due to the straining of the element, we get the final expression of the 

displacement fields.  

§ To compare the strain-based elements with the commonly used 

displacement-based elements, it is noted that the displacement fields of the 

strain-based element are linked through the terms representing both the 

rigid body mode as well as the straining of the element, i.e. most of the 

constant terms appear in expression for each of the displacement fields.  

§ After calculating the displacement fields, the element stiffness matrix can 

be calculated using the general expression  

[ ] [ ] [ ] [ ][ ] [ ]1TT1e C.d(vol).B.D.B.CK −− ∫=  Eq.   2-5 

where the transformation matrix,  [C] is calculated by substituting the value 

of displacement variables (x, y, etc.) at each node. For example, for 

elements with two degrees of freedom per node, [C] is calculated as:  
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 , where n is the total number of nodes. 
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Matrix [ ]B  is the strain matrix involving the coordinate variables attached 

to each of the constant terms in the expression for the various strain 

components. And [ ]D  is the rigidity matrix relating the strains to stress and 

using the material properties (mainly modulus of elasticity and Poisson’s 

ratio in structural solid mechanics and plane elasticity problems). 
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3. CHAPTER THREE: COMPUTER PROGRAMS 

3.1 USED COMPUTER SOFTWARE 

Two main programs were used for the derivation of the new finite elements and 

computer implementation of the analysis. A description of each program is 

given below. 

3.1.1 MathCAD Software 

MathCAD is a powerful mathematics software for technical calculations. The 

program is used to implement almost all kinds of mathematical operations in an 

easy way. The program interface is just like an open page so the user can write 

anywhere in this page. The basic feature of the program is that it implements 

symbolic mathematics such as simplifying expressions, differentiation, 

integration, collecting variables, factoring terms, etc.  

In this thesis, MathCAD is used to derive the displacement fields for triangular 

and rectangular elements as will be detailed in the next chapters. In this regard, 

the strains are assumed then the remaining symbolic analysis are made until the 

complete expressions for displacement fields are completed and then the 

adequacy of the resulting transformation matrix is checked by applying it to an 

arbitrarily oriented element. The use of MathCAD makes it easy to change the 

assumptions for strains and see the resulting displacement fields immediately. 
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3.1.2 MatLab Software 

MatLab is an interactive system for doing numerical computations. The 

program got its name from the fact that it is a “Matrix Laboratory” because it is 

based on matrix manipulations, which produce high efficiency in calculations. 

Each entry into the MatLab is treated as a matrix, even if it is a single number. 

Computation speed of the program is incredible so it is very suitable to be used 

to solve the large number of simultaneous equations resulting from finite 

element analyses. For example, the inverse of a very large stiffness matrix is 

calculated using one command in contrast to the old programming languages 

where that task usually requires a large amount of programming effort. 

3.2 IMPLEMENTATION OF THE FEM ANALYSIS 

Special purpose computer programs were developed using MatLab to generate 

the mesh data including node coordinates and element connectivity for the 

cases of triangular and rectangular elements within each problem domain. 

Furthermore, another program was developed to solve the problems using each 

element type, i.e. the existing CST and BRE elements as well as the new 

triangular and rectangular elements, which will be developed in the following 

chapter of this thesis.  

Input data was written in a separate file to organize the data and facilitate the 

process of generating the nodal coordinates and element connectivity (mesh 

definition). Output of the program was also received into a separate file. The 

output included the input data, nodal forces, nodal displacements and element 

stresses at the nodes of each element. 

Samples of the used computer programs are shown in “Appendix A” including:  

A-1:  MatLab Code for Generation of Triangular Mesh in Rectangular Domain 

A-2:  MatLab Code for Generation of Rectangular Mesh in Rectangular Domain 

A-3:  MatLab Code for the Strain Based Triangular Element with In-plane Rotation 

(SBTREIR) 
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A-4:  MatLab Code for the Strain Based Rectangular Element with In-plane 

Rotation (SBREIR) 

A-5:  Sample Input File  (Rectangular Element) 

A-6:  Sample Output File  (Rectangular Element) 

 

3.2.1 Outline of the Major Program Steps 

The following is a summary of the basic stages that one has to go through when 

implementing the MatLab developed computer program.  

 

§ Start 

§ Ask for input file name to read input data 

§ Ask for output file name to write results 

§ Read input file: 

o Total number of nodes in the structure  

o Total number of elements in the structure  

o Node coordinates 

o Element connectivity data 

o Material Data: Modulus of elasticity, Poisson’s ratio, thickness 

o Nodal forces 

o Nodal fixation data (boundary conditions) 

§ Plot the structure to ensure correctness of data 

§ Open output file and prepare headings to write results 

§ Write the input data into the output file 

§ Prepare sampling points and weights to be used in numerical integration 

§ Calculate the rigidity matrix for (plane stress / plane strain) 

§ Start calculating element stiffness matrix: 

o Read element coordinates 

o Calculate the transformation matrix [C] 

o Assign zero matrix for the element stiffness matrix,  
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o For each of the sampling points:  

- Calculate the value shape functions and their derivatives. 

- Calculate the strain matrix [B]. 

- Calculate the value of the stiffness matrix and accumulate it. 

§ Assemble the global stiffness matrix of the structure [GK] 

§ Apply boundary conditions to stiffness matrix and nodal force vector {F} 

§ Solve for global nodal displacements {GD} = inv [GK].{F} 

§ Write nodal displacements to the output file 

§ Prepare headings to write stresses into the output file  

§ Start calculating the element stresses:  

o Read element coordinates again 

o Extract element nodal displacements {d} from the global 

displacements [GD] 

o Calculate the transformation matrix [C] again 

o Calculate the rigidity matrix [D] 

o Calculate the strain matrix [B] 

o Calculate the element stresses = [D].[B].inv[C].{d} 

o Write element stresses to the output file 

§ End 

 

3.2.2 Programs Flow Chart 

The following figure shows the usual flow chart of processes involved in the 

implementation of the finite element analysis. 

 



www.manaraa.com

Chapter 4: Development of New Strain-Based Triangular Element 
 

30 

 
   

Read Input Data   
Geometry  –  Loading {F}   

Material Properties   
Supporting Conditions   

Evaluation   
Evaluate individual   

element stiffness Matrix,  k   
  
  

Assembly   
Assemble overall   
stiffness matrix    

of the structure,  GK   

Evaluate Stresses   
  

START   

Boundary   Condition    
Apply boundary   

Condition to GK and {F}    

Solution   
Solve for  global displacements   

{F} =  [GK] .{GD}   

Stiffness  Matrix  
Requirements   

Shape Functions   
Displacement Fields   

Transformation Matrix   
Strain Matrix   

Rigidity Matrix   
  

Write Displacements and  
Stresses to Output File   

  

END    

P re - Processing   
St a g e   

Processing   
St a g e   

P ost - Processing   
St a g e   

P lot Stress es   
( I f  required)   

  

 
Figure  3-1: Finite Element Analysis Flow Chart 
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4. CHAPTER FOUR: DEVELOPMENT OF NEW STRAIN-BASED 
TRIANGULAR ELEMENT 

4.1 INTRODUCTION 

In this chapter, the strain-based approach is extended to investigate the ability 

of deriving displacement fields for a new strain based triangular element with 

the inclusion of the third degree of freedom at each node, which is the in-plane 

rotation (also called drilling degree of freedom).  

The performance of the new triangular element is investigated by applying it to 

the solution of two common plane elasticity problems. These problems are: the 

problem of a plane deep cantilever beam fixed at one end and loaded by a point 

load at the free end and the problem of a simply supported beam loaded at the 

mid-span by a point load.  

The results obtained by the developed triangular strain based element are 

compared to those given by the well known Constant Strain Triangle (CST) 

and the analytical solutions for deflection and stresses as detailed below. 

4.2 DERIVATION OF DISPLACEMENT FIELDS OF NEW 

TRIANGULAR ELEMENT WITH IN-PLANE ROTATION 

The following outlines the assumptions and steps to derive the new strain-

based triangular element. 

§ The new triangular element has three corner nodes with three degrees of 

freedom at each node as shown in the figure below. 

§ The displacement fields must satisfy the requirement of strain-free rigid 

body mode of displacement and straining of the element. 
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Figure  4-1: Coordinates and Node Numbering for Triangular Element with 3 DOF per 

node 
§ To get the first part of the displacement fields for rigid-body mode (U1 and 

V1), we begin by writing the strain/displacement relationships for plane 

elasticity and make them equal to zero. These relationships are given by: 
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where  

U and V : are the displacements in the x and y directions respectively. 

εx and εy : are the direct axial strains in the x and y directions respectively. 

γxy  : is the shear strain. 

Next these stains are set equal to zero and then integrated, they will give 
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where  (y)'f1  and (x)'f 2 are constants that can be taken as 

a(y)'f1 −=  and 32 a(x)'f =  

hence,  

 xa  (x)f andy a  (y)f 3231 =−=  
thus, 
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 xaaV
y a aU

321

311

+=
−=

 Eq.  4-2 

where  

U1 and V1 : are the displacements in the x and y directions respectively 

corresponding to rigid-body mode of displacement. 

a1 and a2 : represent the translations of the element in the x and y 

directions respectively. 

a3 :  represent the rigid-body in plane rotation of the element.  

It is noted that equations Eq.  4-2 are applicable to any type of two 

dimensional plane finite elements regardless of the total number of degrees 

of freedom per node. 

§ Depending on the number of nodes and the number of degrees of freedom 

per node in the considered element, it is generally essential that the total 

number of degrees of freedom in the element (and hence the number of 

constants used in defining the displacement fields within the element) 

equals the number of nodes times the number of degrees of freedom per 

node.  

§ Three constants have already been defined while the remaining six have to 

be used to describe the straining of the element. A first attempt to do so is to 

assume that  

y  a x aγ
 xaa ε
y aa ε

98xy

76y

54x

+=

+=
+=

 Eq.  4-3 

§ This arrangement of strains does not contain a constant term in the 

expression for xyγ  and it is expected that it wouldn’t give good solutions. 

Also it was found that it leads to a singular displacement transformation 

matrix and hence it can’t be used to derive a stiffness matrix. 

§ Several other arrangements were tried to avoid this problem. A good 

arrangement that gives non-singular transformation matrix is found to be as 

follows:  
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 Eq.  4-4 

§ We observe that, if the terms of this equation are twice differentiated, they 

satisfy the general compatibility equation of strains, namely: 
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 Eq.  4-5 

§ The constants a4, a6 and a8 are the terms corresponding to state of constant 

strain that ensures the convergence of the solution with mesh refinement. 

The constants a5, a7 and a9 are the terms corresponding to the strain 

behavior. 

§ To get the second part of the displacement fields for straining mode (U2, 

V2), we first integrate the fist two equations as follows. 
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Eq.  4-6 

§ To get the functions f(x) and f(y), we substitute their derivatives in the third 

equation then separate the resulting expressions for x and y respectively as 

follows: 
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§ The in-plane rotation can be calculated using the relation: 
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§ Now, f(x) and f(y) are substituted in U2, V2. By adding the expressions for 

U1 and V1 to U2 and V2 then calculating the in-plane rotation, the complete 

expressions for the displacement fields are obtained as: 
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 Eq.  4-10 

§ It is noted that we obtained quadratic and cubic terms (x2, x3, y2 & y3) 

without increasing the number of nodes beyond the three corner nodes. This 

is not achieved in the known constant strain triangular element (CST). It is 

expected that this increase in the degree of the polynomials will result in 

more accurate solutions using this element; as will be shown in the 

subsequent sections. 

§ Having obtained the displacement fields, the stiffness matrix of the 

triangular element can be evaluated using the general expression 
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where, the transformation matrix [C] is calculated as 
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the strain matrix [B] for this element is 
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and [D] is the rigidity matrix given by 
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In the subsequent sections, this element will be called Strain Based 

Triangular Element with In-Plane Rotation, (SBTREIR). 

4.3 PROBLEMS CONSIDERD  

The performance of the new strain based triangular element derived in the 

previous section is applied to solve a deep cantilever problem and a simply 

supported beam problem as detailed below. 

4.4 DEEP CANTILEVER BEAM PROBLEM 

The first problem is a deep cantilever beam loaded by a point load at the free 

end.  The beam have length L=10m, height H=4m, and thickness t=0.0625m. 

The material properties: modulus of elasticity and Poisson’s ratio are taken as 

E=100,000 KPa and ν=0.20 respectively. The point load at the free end of the 

beam is taken as P =100 KN. In order to achieve full fixity at the built-in end of 
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the cantilever beam, all the nodes occurring at that end are assumed to be 

restrained in the x and y directions as well as the in-plane rotation. Dimension 

and locations of the investigated points within the cantilever beam are shown in 

Figure  4-2 below. 
 

A C 

B P 

t 
L = 10m 

H = 4m 

 
Figure  4-2: Dimensions and Locations of Considered Points for the Deep Cantilever 

Beam 
 

4.4.1 Used Mesh Size 

Several mesh sizes were used in the solution of the problem with increasing the 

total number of triangular elements. The adopted aspect ratio is 1:1 in almost 

all cases. The following table shows the number of elements, number of nodes 

and the aspect ratio of each mesh size.  

 

Table  4-1: Mesh Size and Aspect Ratio of the Deep Cantilever Beam Using Triangular 
Elements 

Elements in Short 
Side (L=4m) 

Elements in Long 
Side (L=10m) 

No. Dimension 
(m) No. Dimension 

(m) 

Aspect 
Ratio 

Mesh 
Size 

Total no. of 
Triangular 
Elements 

Total 
no. of 
Nodes 

2 2.000 5 2.000 1 : 1 2x5 20 18 
4 1.000 10 1.000 1 : 1 4x10 80 55 
5 0.800 12 0.833 1: 1.042 5x12 120 78 
6 0.667 15 0.667 1 : 1 6x15 180 112 
8 0.500 20 0.500 1 : 1 8x20 320 189 

 

A sample mesh size is illustrated in the figure below. 
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Figure  4-3: Sample Triangular Mesh of the Deep Cantilever Beam Problem 

 

4.4.2 Analytical Solution  

Based on the given geometry and material properties, the analytical solution for 

deflection and stresses at the specified points are calculated as follows: 

§ Vertical deflection at the free end, point “A”= 1.105 mm. 

§ Bending stress at middle of upper face, point “B”= 3000 KPa. 

§ Shear stress at middle of centerline, point “C”= 600 KPa. 

§ In-Plane rotation at the free end, point “A”= 0.156 rad. 

4.4.3 Convergence Results 

The problem was solved using the developed computer program (described in 

Chapter 3 and Annex A) for each of the mesh sizes listed in Table 4-1 above. 

Convergence of the overall pattern of bending stress in the cantilever beam is 

shown below for the analytical solution as well as the triangular elements (CST 

and SBTREIR) using each mesh size (Red: tension, Blue: compression). 

 
Bending Stress Pattern – Analytical Solution 
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CST Mesh Size 2x5 

 
CST Mesh Size 4x10 

 
CST Mesh Size 5x12 

 
CST Mesh Size 6x15 

Figure  4-4: Bending Stress Pattern in the Deep Cantilever Beam Using CST 
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SBTREIR Mesh Size 2x5 

 
SBTREIR Mesh Size 4x10 

 
SBTREIR Mesh Size 5x12 

 
SBTREIR Mesh Size 6x15 

Figure  4-5: Bending Stress Pattern in the Deep Cantilever Beam Using SBTREIR 
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Table 4-2 shows a summary of the used meshes and results for vertical 

deflection, bending stress and shearing stress at the specified points within the 

deep cantilever beam as a percentage of the exact solutions for the CST and the 

new SBTREIR. 

 

Table  4-2: Results of the Deep Cantilever Beam Problem Using Triangular Elements 
(CST and SBTREIR)  

Vertical Deflection 
at A 

Bending Stress  
at B 

Shearing Stress  
at C Mesh 

Size 
No. of 

Elements 
No. of 
Nodes 

CST SBTREIR CST SBTREIR CST SBTREIR 

2 x 5 20 18 57.21% 71.12% 36.53% 70.18% 63.17% 63.11% 
4 x 10 80 55 83.45% 89.44% 67.78% 87.48% 85.47% 97.79% 
5 x 12* 120 78 88.50% 92.68% 75.00% 90.65% 86.83% 94.73% 
6 x 15* 180 112 91.86% 95.56% 80.17% 93.18% 93.28% 99.18% 
8 x 20 320 189 95.29% 98.25% 86.11% 96.00% 96.08% 99.59% 

Analytical Solutions 1.105 3000.00 600.00 
*   Note: In the case that any of the required points does not lie on a node, (as in the mesh 

sizes of 5x12 and 6x15 in this problem), results of bending stress and/or shearing stress are 

averaged from the nearest nodes to the location of the required point. 

 

For the deep cantilever beam problem, we notice that the new triangular 

element, SBTREIR gives higher accuracy results than the CST for the cases of 

vertical deflection, bending stress and shear stress. For both elements, the 

convergence of the solution to the analytical value is ensured as more elements 

and nodes are used (mesh refinement).  

The overall stress pattern converges to the analytical pattern in the solutions of 

the two triangular elements. 

Figures 4-6 to 4-9 show graphical comparison between the results obtained by 

the SBTREIR element, the CST element and the analytical solutions. 
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Figure  4-6: Vertical Deflection at “A”, (mm) in the Deep Cantilever Beam Using Triangular Elements 
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Figure  4-7: Bending stress at “B”, (KPa) in the Deep Cantilever Beam Using Triangular Elements 
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Figure  4-8: Shearing Stress at “C”, (KPa) in the Deep Cantilever Beam Using Triangular Elements 
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Figure  4-9: In-Plane Rotation at “A”, (Rad) in the Deep Cantilever Beam Using Triangular Elements 
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4.5 SIMPLY SUPPORTED BEAM PROBLEM 

The second problem used to test the performance of the new element is that of 

a simply supported beam loaded by a point load at the middle of the upper 

surface of the beam. The beam have length, L=4m, height H=1m, and thickness 

t=0.5m. The material properties are taken as E=20,000 KPa and ν=0.20. The 

point load at the midspan end of the beam is taken as P=4.2 KN. The locations 

of the investigated points within the simply supported beam are shown in 

Figure 4-7 below. 

 

A 

C 

P 

B 

t L = 4m 

H = 1.0 
m 

1.0m 

0.5m 

0.5m 

 
Figure  4-10: Dimensions and Considered Points for the Simply Supported Beam 

 

4.5.1 Used Mesh Size 

The following table shows the number of elements, number of nodes and the 

aspect ratio of each mesh size.  

 

Table  4-3: Mesh Size and Aspect Ratio of the Simply Supported Beam Using Triangular 
Elements 

Elements in Short 
Side (L=1m) 

Elements in Long 
Side (L=4m) 

No. Dimension 
(m) No. Dimension 

(m) 

Aspect 
Ratio 

Mesh 
Size 

Total no. of 
Triangular 
Elements 

Total 
no. of 
Nodes 

1 1.000 4 1.000 1 : 1 1 x 4 8 10 
2 0.500 8 0.500 1 : 1 2 x 8 32 27 
3 0.333 12 0.333 1 : 1 3 x 12 72 52 
4 0.250 16 0.250 1 : 1 4 x 16 128 85 
5 0.200 20 0.200 1 : 1 5 x 20 200 126 
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A sample mesh size is illustrated in the figure below. 

 
Figure  4-11: Sample Triangular Mesh of the Simply Supported Beam Problem 

 

4.5.2 Analytical Solution  

Based on the given geometry and material properties, the analytical solution for 

deflection and stresses at the specified points are calculated as follows: 

§ Vertical deflection at point “A”= 6.72 mm. 

§ Bending Stress at point “B”= 25.2 KPa. 

§ Shear Stress at point “C”= 6.3 KPa. 

4.5.3 Convergence Results 

The problem was solved using the developed computer program (described in 

Chapter 3 and Annex A) for each of the mesh sizes listed in Table 4-3 above. 

Convergence of the overall pattern of bending stress in the simple beam is 

shown below for the analytical solution as well as the triangular elements (CST 

and SBTREIR) using each mesh size (Red: tension, Blue: compression). 

 
Bending Stress Pattern – Analytical Solution 
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CST Mesh Size 1x4 

 
CST Mesh Size 2x8 

 
CST Mesh Size 3x12 

 
CST Mesh Size 4x16 

 
CST Mesh Size 5x20 

Figure  4-12: Bending Stress Pattern in the Simply Supported Beam Using CST 
 



www.manaraa.com

Chapter 4: Development of New Strain-Based Triangular Element 
 

49 

 
SBTREIR Mesh Size 1x4 

 
SBTREIR Mesh Size 2x8 

 
SBTREIR Mesh Size 3x12 

 
SBTREIR Mesh Size 4x16 

 
SBTREIR Mesh Size 5x20 

Figure  4-13: Bending Stress Pattern in the Simply Supported Beam Using SBTREIR 
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Table 4-4 shows a summary of the used meshes and results for vertical 

deflection, bending stress and shearing stress at the specified points within the 

simply supported beam as a percentage of the exact solutions for the CST and 

the new SBTREIR. 

 

 Table  4-4: Results of the Simply Supported Beam Problem Using Triangular Elements  
(CST and SBTREIR)  

Vertical Deflection 
at A 

Bending Stress 
at B 

Shearing Stress  
at C Mesh 

Size 
No. of 

Elements 
No. of 
Nodes 

CST SBTREIR CST SBTREIR CST SBTREIR 

1 x 4 8 10 31.82% 50.43% 12.74% 78.37% 63.02% 65.16% 
2 x 8 32 27 48.33% 62.62% 35.63% 87.38% 62.06% 81.76% 

3 x 12* 72 52 57.99% 69.27% 53.49% 91.55% 69.52% 87.89% 
4 x 16 128 85 64.08% 73.74% 65.04% 93.81% 86.35% 97.44% 
5 x 20* 200 126 68.24% 77.02% 72.34% 95.28% 87.30% 98.54% 

Analytical Solutions 6.720 25.20 6.3 
*   Note: In the case that any of the required points does not lie on a node, (like the mesh sizes 

of 3x12 and 5x20 in this problem), results of bending stress and/or shearing stress are 

averaged from the nearest nodes to the location of the required point. 

 

Again, for this problem, it is shown that the new triangular element gives 

higher accuracy results than the CST for the cases of vertical deflection, 

bending stress and shear stress. 

The overall stress pattern converges to the analytical pattern in the solutions of 

the two triangular elements. 

 

Figures 4-14 to 4-16 show graphical comparison between the results obtained 

by each of the SBTREIR and the constant strain element CST and the 

analytical solutions. 
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Figure  4-14: Vertical Deflection at "A", (mm)  in the Simply Supported Beam Using Triangular Elements 
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Figure  4-15: Bending Stress at "B", (KPa) in the Simply Supported Beam Using Triangular Elements 
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Figure  4-16: Shearing Stress at "C", (KPa) in the Simply Supported Beam Using Triangular Elements 
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5. CHAPTER FIVE: DEVELOPMENT OF NEW STRAIN-BASED 
RECTANGULAR ELEMENT 

5.1 INTRODUCTION 

In this chapter, the strain-based approach is used to investigate the ability of 

deriving displacement fields for a new strain-based rectangular element with 

the inclusion of the third degree of freedom at each node, which is the in-plane 

rotation, (also called drilling degree of freedom).  

The performance of the new rectangular element is investigated by applying it 

to the solution of two of the common plane elasticity problems. These 

problems include: the problem of a plane deep cantilever beam fixed at one end 

and loaded by a point load at the free end and the problem of a simply 

supported beam loaded at the mid-span by a point load.  

The results obtained by the developed rectangular strain based element are 

compared to those given by the well-known Bilinear Rectangular Element, 

(BRE) and the analytical values for deflection and stresses as detailed below. 

5.2 DERIVATION OF DISPLACEMENT FIELDS FOR NEW 

RECTANGULAR ELEMENT WITH IN-PLANE ROTATION 

The following outlines the assumptions and steps to derive the new strain-

based rectangular element. 

§ The new rectangular element has four corner nodes with three degrees of 

freedom at each node as shown in the figure below. 

§ The displacement fields are required to satisfy the requirement of strain-free 

rigid body mode of displacement and straining of the element. 
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Figure  5-1: Coordinates and Node Numbering for the Rectangular Element with 3-DOF 

per node 
 

§ To get the first part of the displacement fields for rigid-body motion (U1 

and V1), we begin by writing the strain/displacement relationships for plane 

elasticity and make them equal to zero. These relationships are given by: 

x
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=  Eq.   5-1 

where  

U and V : are the displacements in the x and y directions respectively. 

εx and εy : are the direct axial strains in the x and y directions respectively. 

γxy  : is the shear strain. 

Next, these stains are set equal to zero and then integrated: 
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where  (y)'f1  and (x)'f 2 are constants that can be taken as 

a(y)'f1 −=  and 32 a(x)'f =  

hence,  

 xa  (x)f andy a  (y)f 3231 =−=  
thus, 
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 xaaV
y a aU

321

311

+=
−=

 Eq.  5-2 

where  

U1 and V1 : are the displacements in the x and y directions respectively 

corresponding to strain-free rigid body mode of 

displacement. 

a1 and a2 : represent the translations of the element in the x and y 

directions respectively. 

a3 :  represent the rigid-body in plane rotation of the element.  

§ Depending on the number of nodes and the number of degrees of freedom 

per node in the considered element, it is generally essential that the total 

number of degrees of freedom in the element (and hence the number of 

constants used in defining the displacement fields within the element) 

equals the number of nodes times the number of degrees of freedom per 

node. 

§ The displacements within the element have to be defined by twelve 

constants (a1 through a12). Three constants have already been defined while 

the remaining nine have to be used to describe the deformation straining of 

the element.  

§ As a first trial, these constants are arranged in the following manner:   

yaxaaγ
yaxaa ε
yaxaaε

121110xy

987y

654x

++=

++=
++=

 Eq.  5-3 

§ This arrangement of strains leads to a singular displacement transformation 

matrix. Several other arrangements were tried to avoid this. A good 

arrangement that gives non-singular transformation matrix is found to be as 

follows: 

)
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Eq.  5-4 



www.manaraa.com

Chapter 5: Development of New Strain-Based Rectangular Element 
 

57 

§ We observe that, if the terms of this equation are twice differentiated, they 

satisfy the general compatibility equation of strains, namely: 

yx 
γ
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y
ε xy
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+
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∂

 Eq.  5-5 

The constants a4, a6 and a10 are the terms corresponding to state of constant 

strain that ensures the convergence of the solution with mesh refinement. The 

constants a5, a7 and a11 are the terms corresponding to linear strain behavior 

within the element. The higher order bracketed terms are included to satisfy the 

compatibility equation. 

The second part of the displacement fields (U2, V2) is obtained by following the 

same procedure as before; this gives: 
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Now, f(x) and f(y) are substituted in U2, V2.  
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By adding the expressions for U1 & V1 and U2 & V2 then calculating the in-

plane rotation, the complete expressions for the displacement fields are 

obtained as: 
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Eq.  5-10 
§ It is noted that we obtained quadratic and cubic terms (x2, x3, y2 & y3) 

without increasing the number of nodes beyond the four corner nodes. This 

is not achieved in the well-known bilinear rectangular element. It is 

expected that this increase in the degree of the polynomials will result in 

more accurate solutions using this element as will be shown in the 

subsequent sections. 

§ Having obtained the displacement fields, the stiffness matrix of the 

triangular element can be evaluated using the general expression 

[ ] [ ] [ ] [ ][ ] [ ]1TT1e C.d(vol).B.D.B.CK −− ∫=  Eq.  5-11 

where, the transformation matrix, [C] is calculated as 
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the strain matrix [B] for this element is 
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and [D] is the rigidity matrix given by 
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ED  for the state of plane strain. 

In the subsequent sections, this element will be called: Strain Based 

Rectangular Element with In-Plane Rotation, (SBREIR). 

5.3 PROBLEMS CONSIDERD  

The performance of the new strain-based rectangular element derived in the 

previous section is applied to solve the same deep cantilever and simply 

supported beam problems as detailed below. 

5.4 DEEP CANTILEVER BEAM PROBLEM 

The same deep cantilever problem that was described in Section 4.4 was solved 

again using the new rectangular element as well as the existing bilinear 

rectangular element. 

5.4.1 Used Mesh Size 

Several mesh sizes were used in the solution of the problem with increasing the 

total number of rectangular elements. The adopted aspect ratio is 1:1 in almost 

all cases. The following table shows the number of elements and number of 

nodes and aspect ratio at each mesh size.  
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Table  5-1: Mesh Size and Aspect Ratio of the Deep Cantilever Beam Using Rectangular 
Elements 

Elements in Short 
Side (L=4m) 

Elements in Long 
Side (L=10m) 

No. Dimension 
(m) No. Dimension 

(m) 

Aspect 
Ratio 

Mesh 
Size 

Total no. of 
Rectangular 

Elements 

Total 
no. of 
Nodes 

2 2.000 5 2.000 1 : 1 2x5 10 18 
4 1.000 10 1.000 1 : 1 4x10 40 55 
5 0.800 12 0.833 1: 1.042 5x12 60 78 
6 0.667 15 0.667 1 : 1 6x15 90 112 
8 0.500 20 0.500 1 : 1 8x20 160 189 

10 0.400 25 0.400 1 :  1 10x25 250 286 
A sample mesh size is also illustrated in the figure below. 

 
Figure  5-2: Sample Rectangular Mesh of the Deep Cantilever Beam Problem 

5.4.2 Convergence Results 

The problem was solved using the developed computer program (described in 

Chapter 3 and Annex A) for each of the mesh sizes listed in Table 5-1.  

Convergence of the overall pattern of bending stress in the cantilever beam is 

shown below for the analytical solution as well as the rectangular elements 

(BRE and SBREIR) using each mesh size (Red: tension, Blue: compression). 

 
Bending Stress Pattern – Analytical Solution (Repeated) 
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BRE Mesh Size 2x5 

 
BRE Mesh Size 4x10 

 
BRE Mesh Size 5x12 

 
BRE Mesh Size 6x15 

Figure  5-3: Bending Stress Pattern in the Deep Cantilever Beam Using BRE 
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SBREIR Mesh Size 2x5 

 
SBREIR Mesh Size 4x10 

 
SBREIR Mesh Size 5x12 

 
SBREIR Mesh Size 6x15 

Figure  5-4: Bending Stress Pattern in the Deep Cantilever Beam Using SBREIR 
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Table 5-2 shows a summary of the used meshes and numerical results for 

vertical deflection, bending stress and shearing stress at the specified points 

within the deep cantilever beam as a percentage of the exact solutions for both 

the BRE and the new SBREIR elements.  

 

Table  5-2: Results of the Deep Cantilever Beam Problem Using Rectangular Elements 
(BRE and SBREIR) 

Vertical Deflection 
at A 

Bending Stress  
at B 

Shearing Stress 
at C Mesh 

Size 
No. of 

Elements 
No. of 
Nodes 

BRE SBREIR BRE SBREIR BRE SBREIR 
2 x 5 10 18 88.60% 96.47% 91.57% 100.07% 69.63% 112.31% 

4 x 10 40 55 96.92% 99.00% 98.23% 100.19% 86.92% 96.66% 
5 x 12* 60 78 97.92% 99.37% 98.88% 100.22% 94.49% 92.45% 
6 x 15* 90 112 98.73% 99.55% 99.43% 100.07% 96.38% 95.81% 
8 x 20 160 189 99.37% 99.82% 99.80% 100.10% 96.66% 98.35% 

10 x 25* 250 286 99.64% 99.91% 99.96% 100.01% 98.69% 101.05% 
Analytical Solutions 1.105 3000.00 600.00 

*   Note: In the case that any of the required points does not lie on a node, (like the mesh sizes 

of 5x12, 6x15 and 10x25 in this problem), results of bending stress and/or shearing stress 

are averaged from the nearest nodes to the location of the required point. 

 

For the deep cantilever problem, we notice that the new rectangular element 

gives higher accuracy results than the BRE for the case of vertical deflection 

and bending stress. For the bending stress, its results are very close but slightly 

more than the exact solution. For the shear stress, the results are almost the 

same as those obtained by the BRE. Both elements converge to the same values 

as the number of elements increases. 

The overall stress pattern converges to the analytical pattern in the solutions of 

the two rectangular elements. 

 

Figures 5-5 to 5-8 show graphical comparison between the results obtained by 

each of the SBREIR, the BRE and the analytical solutions. 
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Figure  5-5: Vertical Deflection at “A”, (mm) in the Deep Cantilever Beam Using Rectangular Elements 
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Figure  5-6: Bending Stress at “B”, (KPa) in the Deep Cantilever Beam Using Rectangular Elements 
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Figure  5-7: Shearing Stress at “C”, (KPa) in the Deep Cantilever Beam Using Rectangular Elements 
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Figure  5-8: In-Plane Rotation at “A”, (mm) in the Deep Cantilever Beam Using Rectangular Elements 
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5.5 SIMPLY SUPPORTED BEAM PROBLEM 

The same simply supported problem that was described in Section 4.5 was 

solved again using the new rectangular element. 

 

5.5.1 Used Mesh Size 

The following table shows the number of elements, number of nodes and 

aspect ratio for each mesh size.  

 

Table  5-3: Mesh Size and Aspect Ratio of the Simply Supported Beam Using 
Rectangular Elements 

Elements in Short 
Side (L=1m) 

Elements in Long 
Side (L=4m) 

No. Dimension 
(m) No. Dimension 

(m) 

Aspect 
Ratio 

Mesh 
Size 

Total no. of 
Rectangular 

Elements 

Total 
no. of 
Nodes 

1 1.000 4 1.000 1 : 1 1 x 4 8 10 
2 0.500 8 0.500 1 : 1 2 x 8 32 27 
3 0.333 12 0.333 1 : 1 3 x 12 72 52 
4 0.250 16 0.250 1 : 1 4 x 16 128 85 
5 0.200 20 0.200 1 : 1 5 x 20 200 126 

5.5.2 Convergence Results 

The problem was solved using the developed computer program (described in 

Chapter 3 and Annex A) using each of the mesh sizes listed in Table 5-3 above.   

Convergence of the overall pattern of bending stress in the simple beam is 

shown below for the analytical solution as well as the rectangular elements 

(BRE and SBREIR) using each mesh size (Red: tension, Blue: compression). 

 
Bending Stress Pattern – Analytical Solution (repeated) 
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BRE Mesh Size 1x4 

 
BRE Mesh Size 2x8 

 
BRE Mesh Size 3x12 

 
BRE Mesh Size 4x16 

 
BRE Mesh Size 5x20 

Figure  5-9: Bending Stress Pattern in the Simply Supported Beam Using BRE 
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SBREIR Mesh Size 1x4 

 
SBREIR Mesh Size 2x8 

 
SBREIR Mesh Size 3x12 

 
SBREIR Mesh Size 4x16 

 
SBREIR Mesh Size 5x20 

Figure  5-10: Bending Stress Pattern in the Simply Supported Beam Using SBREIR 
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Table 5-4 shows a summary of the used meshes and numerical results for 

vertical deflection, bending stress and shearing stress at the specified points 

within the simply supported beam as a percentage of the exact solutions for 

both the BRE and the new SBREIR elements.  

 

Table  5-4: Results of the Simply Supported Beam Problem Using Rectangular Elements 
(BRE and SBREIR) 

Vertical Deflection 
at A (mm) 

Bending Stress at 
B (KPa) 

Shearing Stress at C 
(KPa) Mesh 

Size 
No. of 

Elements 
No. of 
Nodes 

BRE SBREIR BRE SBREIR BRE SBREIR 
1 x 4 4 10 47.77% 52.23% 67.86% 97.78% 9.52% 38.25% 
2 x 8 16 27 62.05% 62.80% 86.35% 96.55% 54.92% 83.33% 

3 x 12* 36 52 69.35% 68.45% 92.42% 97.38% 66.51% 90.63% 
4 x 16 64 85 73.66% 72.17% 95.16% 97.94% 86.83% 100.48% 
5 x 20* 100 126 76.64% 75.00% 96.39% 97.94% 94.92% 97.94% 

Exact Solutions 6.720 25.20 6.30 
*   Note: In the case that any of the required points does not lie on a node, (like the mesh sizes 

of 3x12 and 5x20 in this problem), results of bending stress and/or shearing stress are 

averaged from the nearest nodes to the location of the required point. 

 
Again for this problem, it is shown that the new rectangular element gives 

higher accuracy results than the BRE for the cases of bending stress and 

shearing stress. For vertical deflection the results are almost the same as those 

obtained by the BRE. Both elements converge to the same values as the 

number of elements increases. 

Figures 5-11 to 5-13 show graphical comparison between the results obtained 

by each of the SBREIR, the BRE and the exact analytical solution. 
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Figure  5-11: Vertical Deflection at “A”, (mm) in the Simply Supported Beam Using Rectangular Elements 
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Figure  5-12: Bending Stress at “B”, (KPa) in the Simply Supported Beam Using Rectangular Elements 
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Figure  5-13: Shearing Stress at “C”, (KPa) in the Simply Supported Beam Using Rectangular Elements 
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6. CHAPTER SIX: COMPARISON OF THE NEW TRIANGULAR 
AND RECTANGULAR ELEMENTS 

The performance of the new triangular and rectangular elements is now studied 

by comparing their results of deflection and stresses for the problems of deep 

cantilever beam and simply supported beam that were solved previously. The 

results are compared based on the number of nodes for each mesh size. 

6.1 SUMMARY AND DISCUSSION OF RESULTS FOR THE DEEP 

CANTILEVER BEAM 

The following tables show a summary of results obtained for the deep 

cantilever beam problem using various triangular and rectangular elements. 

Both results of available elements (CST & BRE) and the new elements 

(SBTREIR & SBREIR) are included.  

Tables 6-1 to 6-4 summarize the results for vertical deflection at point “A”, 

bending stress at “B”, shearing stress at point “C” and in-plane rotation at point 

“A” respectively. Graphical representations of these results are shown in 

Figures 6-1 to 6-4. 

 

Table  6-1: Vertical Deflection at “A” (mm) in the Deep Cantilever Beam from Various 
Elements 

Triangular Elements Rectangular Elements 
Mesh Size No. of Nodes CST Tri-

SBTREIR BRE Rect-
SBREIR 

2x5 18 57.19% 71.13% 88.60% 96.47% 
4x10 55 83.44% 89.41% 96.92% 99.00% 
5x12 78 88.51% 92.67% 97.92% 99.37% 
6x15 112 91.86% 95.57% 98.73% 99.55% 
8x20 189 95.29% 98.28% 99.37% 99.82% 
10x25 286 --- --- 99.64% 99.91% 

Analytical Solution = 1.105 
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Table  6-2: Bending Stress at “B” (KPa) in the Deep Cantilever Beam from Various 
Elements 

Triangular Elements Rectangular Elements Mesh Size No. of Nodes CST SBTREIR BRE SBREIR 
2x5 18 36.53% 70.18% 91.57% 100.07% 

4x10 55 67.78% 87.48% 98.23% 100.19% 
5x12 78 75.00% 90.66% 98.88% 100.22% 
6x15 112 80.17% 93.18% 99.43% 100.07% 
8x20 189 86.11% 96.00% 99.80% 100.10% 

10 x 25 286 --- --- 99.96% 100.01% 
Analytical Solution = 3000.00 

 

Table  6-3: Shearing Stress at “C”, (KPa) in the Deep Cantilever Beam from Various 
Elements 

Triangular Elements Rectangular Elements Mesh Size No. of Nodes CST SBTREIR BRE SBREIR 
2x5 18 63.17% 63.11% 69.63% 112.31% 

4x10 55 85.47% 97.79% 86.92% 96.66% 
5x12 78 86.83% 94.73% 94.49% 92.45% 
6x15 112 93.28% 99.18% 96.38% 95.81% 
8x20 189 96.08% 99.59% 96.66% 98.35% 

10 x 25 286 --- --- 98.69% 101.05% 
Analytical Solution = 600.00 

 
 

Table  6-4: In-Plane Rotation at “A”, (KPa) in the Deep Cantilever Beam from New 
Elements 

Triangular Elements Rectangular Elements Mesh Size No. of Nodes CST SBTREIR BRE SBREIR 
2x5 18 ---* 72.1% ---* 95.9% 

4x10 55 --- 88.1% --- 96.1% 
5x12 78 --- 91.4% --- 96.8% 
6x15 112 --- 93.4% --- 96.4% 
8x20 189 --- 95.7% --- 96.5% 

10 x 25 286 --- --- --- 96.5% 
Analytical Solution = 0.156 

 * Note: CST and BRE do not give the value of in-plane rotation. 
 
 
§ The CST has the least accurate results for deflection and stresses. The new 

triangular element (SBTREIR) gives higher accuracy results than the CST 

for the cases of vertical deflection, bending stress and shear stress. This is 

attributed to the higher number of degrees of freedom per node and the 

quadratic variation of displacement fields in the SBTREIR. 
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§ The new rectangular element (SBREIR) gives higher accuracy results than 

the BRE for the case of vertical deflection and bending stress. This is 

attributed to the higher number of degrees of freedom per node and the 

quadratic variation of displacement fields in the SBREIR. For the bending 

stress, the results are very close but slightly more than the exact solution. 

For the shear stress, the results are almost the same as those obtained by the 

BRE.  

§ Results of all elements are not good when the structure is divided into a 

small number of elements (i.e. at course mesh size) as anticipated, 

especially for the shearing stress. 

§ For all elements, the solution converges to the analytical value as more 

elements and nodes are used (mesh refinement). Also, the rate of 

convergence slows down as more refinement is made. These are well 

known features of the finite element solutions 

§ The new strain based elements give the value of in-plane rotation while the 

CST and BRE don’t. This is considered as an advantage of the new 

elements over the CST and BRE. 
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Figure  6-1: Vertical Deflection at “A” (mm) in the Deep Cantilever Beam from Various Elements 
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Figure  6-2: Bending Stress at “B” (KPa) in the Deep Cantilever Beam from Various Elements 



www.manaraa.com

Chapter 6: Comparison of the New Triangular and Rectangular Elements  
 

80 

 

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250 300 350
No. of Nodes

Sh
ea

r 
St

re
ss

, K
Pa

Analytical Solution
SBREIR
BRE
SBTREIR
CST

C

 
Figure  6-3: Shearing Stress at “C”, (KPa) in the Deep Cantilever Beam from Various Elements 
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Figure  6-4: In-Plane Rotation at “A”, (Rad) in the Deep Cantilever Beam from the new Elements 
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6.2 SUMMARY AND DISCUSSION OF RESULTS FOR THE SIMPLY 

SUPPORTED BEAM  

The following tables show a summary of results obtained for the simply 

supported beam problem using various triangular and rectangular elements. 

Both results of available elements (CST & BRE) and the new elements 

(SBTREIR & SBREIR) are included.  

Tables 6-5 to 6-7 summarize the results for vertical deflection at point “A”, 

bending stress at “B” and shearing stress at point “C” respectively. Graphical 

representations of these results are shown in Figures 6-5 to 6-7. 

 

Table  6-5: Vertical Deflection at “A” (mm) in the Simply Supported Beam from Various 
Elements 

Triangular Elements Rectangular Elements Mesh Size No. of Nodes CST SBTREIR BRE SBREIR 
1 x 4 10 2.14 3.39 3.21 3.51 
2 x 8 27 3.25 4.21 4.17 4.22 

3 x 12 52 3.90 4.66 4.66 4.60 
4 x 16 85 4.31 4.95 4.95 4.85 
5 x 20 126 4.59 5.18 5.15 5.04 

Analytical Solution = 6.72 
 

 

Table  6-6: Bending Stress at “B” (KPa) in the Simply Supported Beam from Various 
Elements 

Triangular Elements Rectangular Elements Mesh Size No. of Nodes CST SBTREIR BRE SBREIR 
1 x 4 10 3.21 19.75 17.10 24.64 
2 x 8 27 8.98 22.02 21.76 24.32 
3 x 12 52 13.48 23.07 23.29 24.54 
4 x 16 85 16.39 23.64 23.98 24.68 
5 x 20 126 18.23 24.01 24.29 24.68 

Analytical Solution = 25.20 
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Table  6-7: Shearing Stress at “C”, (KPa) in the Simply Supported Beam from Various 
Elements 

Triangular Elements Rectangular Elements 
Mesh Size No. of Nodes CST Tri-

SBTREIR BRE Rect-
SBREIR 

1 x 4 10 3.97 4.10 0.60 2.41 
2 x 8 27 3.91 5.15 3.46 5.25 

3 x 12 52 4.38 5.54 4.19 5.71 
4 x 16 85 5.44 6.14 5.47 6.33 
5 x 20 126 5.50 6.21 5.98 6.17 

Analytical Solution = 6.30 
 

§ The CST has the least accurate results for deflection and stresses. The new 

triangular element (SBTREIR) gives higher accuracy for results than the 

CST for the cases of vertical deflection, bending stress and shear stress. 

This is attributed to the higher number of degrees of freedom per node and 

the quadratic variation of displacement fields in the SBTREIR. 

§ The new triangular element (SBTREIR), the BRE, and the new rectangular 

element (SBREIR) give almost the same results for deflection and bending 

stress. 

§ The new rectangular element (SBREIR) gives higher accuracy for results 

than the BRE for the case of vertical deflection and bending stress. For the 

bending stress, the results are very close to the exact solution. For vertical 

deflection the results are almost the same as those obtained by the BRE. 

§ Results of all elements are not good when the structure is divided into a 

small number of elements (i.e. at course mesh size) as anticipated, 

especially for the shearing stress. 

§ For all elements, the solution converges to the analytical value as more 

elements and nodes are used (mesh refinement). Also, the rate of 

convergence slows down as more refinement is made. These are well 

known features of the finite element solutions 

 

 

 



www.manaraa.com

Chapter 6: Comparison of the New Triangular And Rectangular Elements 
 

84 

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

0 20 40 60 80 100 120 140
No. of Nodes

V
er

tic
al

 D
ef

le
ct

io
n,

 m
m

Analytical Solution
SBREIR
BRE
SBTREIR
CST

A

 

Figure  6-5: Vertical Deflection at Point “A” (mm) in the Simply Supported Beam from Various Elements 
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Figure  6-6: Bending Stress at “B” (KPa) in the Simply Supported Beam From Various Elements 
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Figure  6-7: Shearing Stress at “C” (KPa) in the Simply Supported Beam From Various Elements 
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7. CHAPTER SEVEN: CONCLUSIONS AND 
RECOMMENDATIONS 

7.1 CONCLUSIONS 

Two new strain-based triangular and rectangular finite elements in cartesian 

coordinates system, for two dimensional elasticity problems have been 

developed in this thesis. To test the performance of these elements, they have 

been applied to solve two common plane elasticity problems: a deep cantilever 

beam problem and a simply supported beam problem. Results obtained using 

the new elements were compared to those of the well-known constant strain 

triangular element (CST) and the bilinear rectangular element (BRE). All 

results are then compared with the exact elasticity solutions.  

It is concluded that  

§ The new triangular element (SBTREIR) gives higher accuracy results than 

the (CST) for the cases of vertical deflection, bending stress and shear stress 

for both of the considered problems. 

§ The new rectangular element (SBREIR) gives higher accuracy results than 

those of the (CST), (BRE) and (SBTREIR) for vertical deflection and 

bending stress in the case of the deep cantilever beam problem. Results for 

bending stress are very close to the exact solution while the results for 

shearing stress are almost the same as those obtained by the (BRE).  

§ Results obtained by (SBREIR, SBTREIR and BRE) are almost the same for 

deflection and bending stress in the case of the simply supported beam 

problem. Their results are of higher accuracy than the results of the (CST). 
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7.2 RECOMMENDATIONS 

Even though the new strain-based triangular and rectangular elements give 

accurate results and compare well to the CST and BRE respectively, it is 

recommended that another future research be conducted to compare our 

proposed elements to higher order versions of displacement-based elements 

such as the linear strain triangle (LST) and the quadratic isoparametric 

rectangular element. 
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A.1 GENERATION OF TRIANGULAR MESH IN RECTANGULAR 

DOMAIN (USING MATLAB) 

function [] = Trimesh 
% Generate Simple Triangular Mesh 
% By Salah 
% Input Data: dimensions & No. of elements in x & y direction  
fprintf('%s \n\n', '==========Generation of Triangular Mesh======== 
'); 
lx = input('Dimension in x-direction: ' );  
ly = input('Dimension in y-direction: ' );  
nelex = input('Enter No. of Elements in x-direction: ' );  
neley = input('Enter No. of Elements in y-direction: ' ); 
 
%Calculations 
%No. of elements and increment in x & y direction  
nnodex = nelex + 1;  
nnodey = neley + 1; 
dx = lx / nelex; 
dy = ly / neley; 
         
% Generate Coordinates 
nelexy = nelex * neley*2;    % total no. of Triangular elements 
nnodexy = nnodex * nnodey;        % total no. of nodes 
        % zero matrices and vectors 
        xc=zeros(nnodexy,1); 
        yc=zeros(nnodexy,1); 
        nodedata=zeros(nnodexy,3); 
                 
for row = 1: nnodey 
    for col = 1: nnodex 
        nt = (row-1)* nnodex + col; 
        xc(nt)= (col-1)*dx; 
        yc(nt)= (row-1)*dy; 
    end 
end 
% combining node data into a matrix nodedata=[no., xc, yc]  
% and elementdata=[no., 3 nodes] 
format short 
for i= 1: nnodexy 
    nodedata(i,1)= i; 
    nodedata(i,2)= xc(i); 
    nodedata(i,3)= yc(i); 
 end 
 for elerow = 1: neley 
    for elecol = 1: nelex 
        eleno = (elerow-1)* (nnodex-1) + elecol; 
        node1 = eleno + (elerow-1); 
        node2 = eleno + (elerow); 
        node3 = node2 + nnodex; 
        node4 = node1 + nnodex; 
        elementdata(eleno,1)=eleno; 
        elementdata(eleno,2)=node1; 
        elementdata(eleno,3)=node2; 
        elementdata(eleno,4)=node3; 
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        elementdata(eleno+nelex * neley,1)=eleno+nelex * neley; 
        elementdata(eleno+nelex * neley,2)=node1; 
        elementdata(eleno+nelex * neley,3)=node3; 
        elementdata(eleno+nelex * neley,4)=node4; 
     end 
  end 
   
% Plot of the structure 
figure (1) 
for n=1:nelexy 
 x(1)= xc(elementdata(n,2)); 
 x(2)= xc(elementdata(n,3)); 
 x(3)= xc(elementdata(n,4)); 
 x(4)= x(1); 
 y(1)= yc(elementdata(n,2)); 
 y(2)= yc(elementdata(n,3)); 
   y(3)= yc(elementdata(n,4)); 
   y(4)= y(1); 
   plot (x, y, '-o', 'linewidth', 0.05, 'markersize', 1.5, 
         'markerfacecolor', 'b') 
   axis equal 
  hold on 
end 
leng=length(xc); 
for i=1:leng 
   istr=num2str(i); 
text(xc(i)+0.1*dx, yc(i)+0.1*dy, istr ) 
end 
 
for i=1:length (elementdata) 
   elementno=elementdata(i,1); 
   nd1=elementdata((i),2); 
   x1=xc(nd1); 
   y1=yc(nd1); 
   nd2=elementdata((i),3); 
   x2=xc(nd2); 
   y2=yc(nd2); 
   nd3=elementdata((i),4); 
   x3=xc(nd3); 
   y3=yc(nd3); 
   xx= [x1; x2; x3];   
   yy= [y1; y2; y3]; 
   xaverage=mean(xx); 
   yaverage=mean(yy); 
   elnStr = num2str(elementno); 
   text(xaverage, yaverage, elnStr ) 
end 
 
nodedata 
elementdata 
NoOfElements = nelexy 
NoOfNodes= nnodexy  
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A1.1 Sample Triangular Mesh 

Input 
lx = input('Dimension in x-direction: ' ); 10 
ly = input('Dimension in y-direction: ' ); 4 
nelex = input('Enter No. of Elements in x-direction: ' ); 5 
neley = input('Enter No. of Elements in y-direction: ' ); 2 
 
Results 
nodedata = 
     ٠     ٠     ١ 
     ٠     ٢     ٢ 
     ٠     ٤     ٣ 
     ٠     ٦     ٤ 
     ٠     ٨     ٥ 
     ٠     ١٠    ٦ 
     ٢     ٠     ٧ 
     ٢     ٢     ٨ 
     ٢     ٤     ٩ 
    ٢     ٦     ١٠ 
    ٢     ٨     ١١ 
    ٢     ١٠    ١٢ 
    ٤     ٠     ١٣ 
    ٤     ٢     ١٤ 
    ٤     ٤     ١٥ 
    ٤     ٦     ١٦ 
    ٤     ٨     ١٧ 
    ٤     ١٠    ١٨ 
elementdata = 
     ٨     ٢     ١     ١ 
     ٩     ٣     ٢     ٢ 
     ١٠    ٤     ٣     ٣ 
     ١١    ٥     ٤     ٤ 
     ١٢    ٦     ٥     ٥ 
     ١٤    ٨     ٧     ٦ 
     ١٥    ٩     ٨     ٧ 
     ١٦    ١٠    ٩     ٨ 
     ١٧    ١١    ١٠    ٩ 
    ١٨    ١٢    ١١    ١٠ 
    ٧     ٨     ١     ١١ 
    ٨     ٩     ٢     ١٢ 
    ٩     ١٠    ٣     ١٣ 
    ١٠    ١١    ٤     ١٤ 
    ١١    ١٢    ٥     ١٥ 
    ١٣    ١٤    ٧     ١٦ 
    ١٤    ١٥    ٨     ١٧ 
    ١٥    ١٦    ٩     ١٨ 
    ١٦    ١٧    ١٠    ١٩ 
    ١٧    ١٨    ١١    ٢٠ 
NoOfElements =    ٢٠ 
NoOfNodes =      ١٨ 
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A.2 GENERATION OF RECTANGULAR MESH IN RECTANGULAR 

DOMAIN (USING MATLAB) 

function [] = recmesh 
% Generate Simple Rectangular Mesh 
% By Salah 
% Input Data: dimensions & No. of elements in x & y direction  
fprintf('%s \n\n', '=======Generation of Rectanglar Mesh========= '); 
lx = input('Dimension in x-direction: ' );  
ly = input('Dimension in y-direction: ' );  
nelex = input('Enter No. of Elements in x-direction: ' );  
neley = input('Enter No. of Elements in y-direction: ' ); 
 
%Calculations 
%No. of elements and increment in x & y direction  
nnodex = nelex + 1;  
nnodey = neley + 1; 
dx = lx / nelex; 
dy = ly / neley; 
         
% Generate Coordinates 
nelexy = nelex * neley;    % total no. of elements 
nnodexy = nnodex * nnodey;        % total no. of nodes 
        % zero matrices and vectors 
        xc=zeros(nnodexy,1); 
        yc=zeros(nnodexy,1); 
        nodedata=zeros(nnodexy,3);               
 
for row = 1: nnodey 
    for col = 1: nnodex 
        nt = (row-1)* nnodex + col; 
        xc(nt)= (col-1)*dx; 
        yc(nt)= (row-1)*dy; 
    end 
end 
% combining node data into a matrix nodedata=[no., xc, yc]  
% and elementdata=[no., 4 nodes] 
for i= 1: nnodexy 
    nodedata(i,1)= i; 
    nodedata(i,2)= xc(i); 
    nodedata(i,3)= yc(i); 
 end 
 for elerow = 1: neley 
    for elecol = 1: nelex 
        eleno = (elerow-1)* (nnodex-1) + elecol; 
        node1 = eleno + (elerow-1); 
        node2 = eleno + (elerow); 
        node3 = node2 + nnodex; 
        node4 = node1 + nnodex; 
        elementdata(eleno,1)=eleno; 
        elementdata(eleno,2)=node1; 
        elementdata(eleno,3)=node2; 
        elementdata(eleno,4)=node3; 
        elementdata(eleno,5)=node4;              
     end 
  end 
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% Plot of the structure 
figure (1) 
plot (xc,yc, '-o','linewidth', 0.05,'markersize', 1.5, 
'markerfacecolor', 'b') 
grid on 
axis equal 
elementdata 
nodedata 
NoOfElements = nelexy 
NoOfNodes= nnodexy  
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A2.1 Sample Rectangular Mesh 

Input 
lx = input('Dimension in x-direction: ' ); 10 
ly = input('Dimension in y-direction: ' ); 4 
nelex = input('Enter No. of Elements in x-direction: ' ); 5 
neley = input('Enter No. of Elements in y-direction: ' ); 2 
 
Results 
elementdata = 
     ٧     ٨     ٢     ١     ١ 
     ٨     ٩     ٣     ٢     ٢ 
     ٩     ١٠    ٤     ٣     ٣ 
     ١٠    ١١    ٥     ٤     ٤ 
     ١١    ١٢    ٦     ٥     ٥ 
     ١٣    ١٤    ٨     ٧     ٦ 
     ١٤    ١٥    ٩     ٨     ٧ 
     ١٥    ١٦    ١٠    ٩     ٨ 
     ١٦    ١٧    ١١    ١٠    ٩ 
    ١٧    ١٨    ١٢    ١١    ١٠ 
 
nodedata = 
     ٠     ٠     ١ 
     ٠     ٢     ٢ 
     ٠     ٤     ٣ 
     ٠     ٦     ٤ 
     ٠     ٨     ٥ 
     ٠     ١٠    ٦ 
     ٢     ٠     ٧ 
     ٢     ٢     ٨ 
     ٢     ٤     ٩ 
    ٢     ٦     ١٠ 
    ٢     ٨     ١١ 
    ٢     ١٠    ١٢ 
    ٤     ٠     ١٣ 
    ٤     ٢     ١٤ 
    ٤     ٤     ١٥ 
    ٤     ٦     ١٦ 
    ٤     ٨     ١٧ 
    ٤     ١٠    ١٨ 
 
 
NoOfElements =    ١٠ 
NoOfNodes =    ١٨ 
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A.3 MATLAB CODE FOR THE STRAIN BASED TRIANGULAR 

ELEMENT WITH IN-PLANE ROTATION (SBTREIR) 

function [] = q3b 
% New Strain Based Triangular Element with In-Plane Rotation 
(SBTRIER) 
% No. of Nodes = 3 
% No. of DOF per Node = 3 
% Total No. of DOF Node = 3x3=9 
% By Salah 
% 1) control parameters 
InFileName=input('Name of Input File (without extension):','s'); 
OutFileName=input('Name of Output File (with .m extension):','s'); 
%Data input 
eval (InFileName); 
nnpel = 3;  
ndofpn=3; 
edof=nnpel*ndofpn; 
sdof=nnode*ndofpn; 
elk=zeros(edof,edof); 
iopt=1; % 1 for plane stress and 2 for plane strain 
ngptXiEt=3; % # of Gauss Integration points = 3,4 or 7 for triangles 
%2) zero matrices and vectors 
GF=zeros(sdof,1); 
GK=zeros(sdof,sdof); 
GD=zeros(sdof,1); 
eld=zeros(edof,1); 
stress=zeros(ngptXiEt,3); 
strain=zeros(ngptXiEt,3); 
Bmatrix=zeros(3,edof); 
Dmatrix=zeros(3,3); 
nonnect=zeros(nele,nnpel); 
LinG=zeros(edof,1); 
fix=zeros(sdof,2); 
% Reading node data [node No., XC, YC ] 
for n=1:nnode 
   node(n)=n; 
   xc(n)=nodedata(n,2); 
   yc(n)=nodedata(n,3); 
end 
% Reading Element Data 
for i=1:nele 
   element(i)=elementdata(i,1); 
   nconnect(i,1)=elementdata(i,2); 
   nconnect(i,2)=elementdata(i,3); 
   nconnect(i,3)=elementdata(i,4); 
end 
% Reading Nodal Forces [node No., Fx, Fy, MZ ] 
nforce=size(forcedata,1); 
for i=1:nforce 
   nno(i)=forcedata(i,1);  % nno = node number with force 
   GF(3*nno(i)-2)=forcedata(i,2); 
   GF(3*nno(i)-1)=forcedata(i,3); 
   GF(3*nno(i))=forcedata(i,4); 
end 
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% Reading fixation data  
nfix=size(fixdata,1); 
for i=1:nfix 
   nnofix(i)=fixdata(i,1); % nnofix=# of node with specified fixation 
   fix(3*nnofix(i)-2)=fixdata(i,2); 
   fix(3*nnofix(i)-1)=fixdata(i,3); 
   fix(3*nnofix(i))=fixdata(i,4); 
end 
fixeddisp2=find(fixdata(:,2)==1); 
lng2=length(fixeddisp2); 
for i=1:lng2 
   bcdof(i)=fixdata(fixeddisp2(i),1)*3-2; 
   bcval(i)=0; 
end 
fixeddisp3=find(fixdata(:,3)==1); 
lng3=length(fixeddisp3); 
for i=1 : lng3 
   bcdof(i+lng2)=fixdata(fixeddisp3(i),1)*3-1; 
   bcval(i+lng2)=0; 
end 
fixeddisp4=find(fixdata(:,4)==1); 
lng4=length(fixeddisp4); 
for i=1 : lng4 
   bcdof(i+lng2+lng3)=fixdata(fixeddisp3(i),1)*3; 
   bcval(i+lng2+lng3)=0; 
end 
bcdof=sort(bcdof); 
% Plot of the structure 
figure (1) 
for n=1:nele 
   x(1)= xc(nconnect(n,1)); 
   x(2)= xc(nconnect(n,2)); 
   x(3)= xc(nconnect(n,3)); 
   x(4)= x(1); 
   y(1)= yc(nconnect(n,1)); 
   y(2)= yc(nconnect(n,2)); 
   y(3)= yc(nconnect(n,3)); 
   y(4)= y(1); 
   plot (x,y, '-o','markersize',1.5) 
   axis equal 
   title('Graph of the Q3B Problem') 
   hold on 
end 
% writing Heading and input to output file 
fid1 = fopen(OutFileName,'w'); 
fprintf(fid1,'%s \n','--------- <<<<< Node Data >>>>> -----------'); 
fprintf(fid1,'%s \t %s \t\t %s \n', 'Node','[x y-Fixation, Z 
rotation]','[x & y Coordinates]'); 
for i=1:nnode 
fprintf(fid1,'%d \t %d \t %d \t %d \t %8.4f \t %8.4f \n',[i;fix(3*i-
2);fix(3*i-1);fix(3*i);xc(i);yc(i)]); 
end 
fprintf(fid1, '\n');   
fprintf(fid1,'%s \n','------ <<<<< Element Data >>>>> ---------'); 
fprintf(fid1,'%s \t\t\t %s \t\t\t \n', 'Element','Nodes i-j-m 
Counterclockwise'); 
fprintf(fid1, '\n'); 
for i=1:nele 
   fprintf(fid1,'%d \t %d \t %d \t %d  \n', [i; nconnect(i,1); 
nconnect(i,2); nconnect(i,3)]); 
end 
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fprintf(fid1, '\n'); 
% sampling Points and weights 
format long 
[points,weights]=Gquad(ngptXiEt); 
[Dmatrix]=elmatmtx(emod,noo); 
for n=1:nele 
   for i=1:nnpel 
      nd(i)=nconnect(n,i); 
      xcoord(i)=xc(nd(i)); 
      ycoord(i)=yc(nd(i)); 
   end 
   C=trans(xcoord, ycoord); 
   elk=zeros(edof,edof); 
% numerical Intergrtation    
   for i=1:ngptXiEt 
      Xival=points(i,1); 
      Etval=points(i,2); 
      wtxy=weights(i); 
      [Ns3,pNpXi3,pNpEt3]=ShapeDer3(Xival,Etval); 

[detJac2,Bmatrix]= JacobBmatrix3 (nnpel,edof, pNpXi3,pNpEt3,        
Xival, Etval, xcoord,ycoord); 

      elk=elk+Bmatrix'*Dmatrix*Bmatrix*detJac2*th*wtxy/2; 
   end 
   elk= transpose(inv(C))*elk*inv(C); 
   format bank 
   LinG=feeldof(nd,nnpel,ndofpn); 
   GK=assemble(GK,elk,LinG); 
end  % end of loop for elk and GK 
%----------------------------------------------------------- 
%apply boundary conditions 
[GK,GF]=applybc(GK,GF,bcdof,bcval); 
%----------------------------------------------------------- 
%Solve for Global Displacements, GD 
GD=inv(GK)*GF; 
%----------------------------------------------------------- 
fprintf(fid1,'%s \n','------ <<<<< Nodal Displacements >>>>> ---'); 
fprintf(fid1,'%s  \t %s \t %s \t %s  \t %s  \t %s \n', 'Node','--u--
','--v--','--RZ--', '--x--','--y--'); 
for i=1:nnode 
   fprintf(fid1,'%d \t %8.5f \t %8.5f \t %8.5f \t %8.5f \t %8.5f \t 
\n',[i;GD(3*i-2);GD(3*i-1);GD(3*i); xc(i); yc(i)]); 
end 
fprintf(fid1, '\n'); 
fprintf(fid1,'%s \n','-------- <<<<< Element Stresses>>>>> -------'); 
fprintf(fid1,'%s \t %s \t %s \t %s \t %s \t %s \n','Element',... 
   'Sigma-x','Sigma-y','Shear-xy','xlocation','ylcoation'); 
%----------------------------------------------------------- 
% Element stress  
kk = 1; 
for n=1:nele 
   for i=1:nnpel 
      nd(i)=nconnect(n,i); 
      xcoord(i)=xc(nd(i)); 
      ycoord(i)=yc(nd(i)); 
   end 
   C=trans(xcoord, ycoord); 
   LinG=feeldof(nd,nnpel,ndofpn);       
   intp=0; 
   for i=1:edof 
      eld(i)=GD(LinG(i)); 
   end 
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   Xivalues = [0 1 0]; 
   Etavalues =[0 0 1]; 
   % Values of Shape Functions at NODES 
   npoints = length(Xivalues); 
   for intp=1:npoints  
      Xival=Xivalues (intp); 
      Etval=Etavalues (intp);  
      intp=intp+1; 
      [Ns3,pNpXi3,pNpEt3]=ShapeDer3(Xival,Etval); 

[detJac2,Bmatrix]= JacobBmatrix3 (nnpel,edof, pNpXi3,pNpEt3, 
Xival,Etval, xcoord,ycoord); 

      % Compute and store stress and strain 
      elstrain=Bmatrix* inv(C)* eld; 
      elstress=Dmatrix * Bmatrix* inv(C)* eld; 
      for i=1:3 
         strain(intp,i)=elstrain(i); 
         stress(intp,i)=elstress(i); 
         stressx(kk,1) = stress(intp,1); 
      end 
      xlocation=Ns3* xcoord'; 
      ylocation=Ns3* ycoord'; 
      xcoor(kk)  = xlocation; 
      ycoor(kk)  = ylocation; 
      kk=kk+1;    

   fprintf(fid1,'%d \t %10.2f \t %10.2f \t %10.2f \t %10.4f \t 
%10.4f \t\t \n', [n;stress(intp,1); stress(intp,2); 
stress(intp,3); xlocation; ylocation]);     

   end 
end 
fclose(fid1);          
%------------------------------------------------------------ 
%plot of the structure showing bending stress 
figure (2) 
nl=length (xcoor); 
xlin = linspace(min(xcoor),max(xcoor),nl); 
ylin = linspace(min(ycoor),max(ycoor),nl); 
[X,Y] = meshgrid(xlin,ylin); 
Z = griddata(xcoor,ycoor,stressx,X,Y,'cubic'); 
surf(X,Y,Z);  
axis equal 
shading interp; 
colormap; 
%colorbar; 
view(0,90) 
%----------------------------------------------------------- 
function [Ns3,pNpXi3,pNpEt3]=ShapeDer3(Xival,Etval); 
%Shape functions 
Ns3(1)=1-Xival-Etval;                  
Ns3(2)=Xival; 
Ns3(3)=Etval;   
%Derivatives 
pNpXi3(1)=-1; 
pNpXi3(2)=1; 
pNpXi3(3)=0; 
pNpEt3(1)=-1; 
pNpEt3(2)=0; 
pNpEt3(3)=1; 
%----------------------------------------------------------- 
function 
[detJac2,Bmatrix]=JacobBmatrix3(nnpel,edof,pNpXi,pNpEt,Xival,Etval, 
xcoord,ycoord); 
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Jac2=zeros(2,2); 
for i=1:nnpel 
   Jac2(1,1)=Jac2(1,1)+pNpXi(i)*xcoord(i); 
   Jac2(1,2)=Jac2(1,2)+pNpXi(i)*ycoord(i); 
   Jac2(2,1)=Jac2(2,1)+pNpEt(i)*xcoord(i); 
   Jac2(2,2)=Jac2(2,2)+pNpEt(i)*ycoord(i); 
end 
detJac2=det(Jac2); 
Ns3(1)=1-Xival-Etval;                  
Ns3(2)=Xival; 
Ns3(3)=Etval;   
x = Ns3*xcoord';      % x = N1 x1 + N2 x2 + N3 x3  
y = Ns3*ycoord';      % y = N1 y1 + N2 y2 + N3 y3  
% Bmatrix BY SALAH- (SBTE) 
Bmatrix =[  
   0,0,0,1,y,0,0,0,y^2/4; 
   0,0,0,0,0,1,x,0,-x^2/4; 
   0,0,0,0,-x^2/4,0,y^2/4,1,(x+y)];    %[3x9] 
%------------------------------------------------ 
 
% Function Gquad 
function [points,weights]=Gquad(ngptXiEt) 
% ngpt  = number of Gauss Sampling / Integration Points    
% points = vector containing locations of integration points 1-D 
% weights = vector containing locations weighting factors 1-D 
% initalization  
points=zeros(ngptXiEt,2); 
weights=zeros(ngptXiEt,1); 
% use long format to capture maximum significant figures Important 
format long 
% find corresponding integration points 
% Intialization  
% find corresponding integration points 
format long 
if ngptXiEt ==3 
   points(1,1)=0.1666666666667; 
   points(1,2)=0.1666666666667; 
   points(2,1)=0.6666666666667; 
   points(2,2)=0.1666666666667; 
   points(3,1)=0.1666666666667; 
   points(3,2)=0.6666666666667; 
   weights(1)=1/3; 
   weights(2)=1/3; 
   weights(3)=1/3; 
elseif ngptXiEt ==4 
   points(1,1)=1/3; 
   points(1,2)=1/3; 
   points(2,1)=0.6; 
   points(2,2)=0.2; 
   points(3,1)=0.2; 
   points(3,2)=0.6; 
   points(4,1)=0.2; 
   points(4,2)=0.2; 
   weights(1)=-0.5625; 
   weights(2)=0.520833; 
   weights(3)=0.520833; 
   weights(4)=0.520833; 
end 
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%------------------------------------------------------ 
function[Dmatrix]=elmatmtx(emod,noo) 
Dmatrix=[1,noo,0;... 
       noo,1,0;... 
       0,0,0.5*(1-noo)]*emod/(1-noo^2); 
 
%------------------------------------------------------ 
function [LinG]=feeldof(nd,nnpel,ndofpn) 
k=0; 
for i =1:nnpel 
   start=(nd(i)-1)*ndofpn; 
   for j= 1:ndofpn 
      k=k+1; 
      LinG(k)=start+j; 
   end 
end 
%------------------------------------------------------ 
function [GK]=assemble(GK,elk,LinG) 
edof=length(LinG); 
for i=1:edof 
   ii=LinG(i); 
   for j=1:edof 
      jj=LinG(j); 
      GK(ii,jj)=GK(ii,jj)+elk(i,j); 
   end 
end 
%------------------------------------------------------       
function [GK,GF]=applybc(GK,GF,bcdof,bcval) 
n=length(bcdof); 
sdof=size(GK); 
for i=1:n 
   c=bcdof(i); 
   for j=1:sdof 
      GK(c,j)=0; 
      GK(j,c)=0; 
   end 
   GK(c,c)=1; 
   GF(c)=bcval(i); 
end 
%------------------------------------------------------       
function [C]= trans(xcoord, ycoord); 
C=zeros(9,9);    
for j =1:3 
   i1 = 3*j-2; 
   i2 = 3*j-1; 
   i3 = 3*j; 
   x=xcoord(j); 
   y=ycoord(j); 
   % Coordinate Transformation matrix : BY SALAH-TR4C 
   C(i1,:)=[1,0,-y,x,x*y,0,(y^3/12-y^2/2),y/2,(x*y^2/4+y^2/2)]; 
   C(i2,:)=[0,1,x,0,(-x^2/2-x^3/12),y,x*y,x/2,(-y*x^2/4+x^2/2)]; 
   C(i3,:)=[0,0,1,0,(-x-x^2/8),0,(y-y^2/8),0,(x-y-x*y)/2];    
end 
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A.4 MATLAB CODE FOR THE STRAIN BASED RECTANGULAR 

ELEMENT WITH IN-PLANE ROTATION (SBREIR) 

function [] = q4b 
% Strain Based Rectangular Element with In-Plane Rotation (SBREIR) 
% No. of Nodes = 4 
% No. of DOF per Node = 3 
% Total No. of DOF Node = 4x3=12 
% By Salah  
% 1) control parameters 
InFileName = input('Name of Input File (without extension): ','s' ); 
OutFileName = input('Name of Output File (with .m extension): ','s'); 
%Data input 
eval (InFileName); 
nnpel = 4;  
ndofpn=3; 
edof=nnpel*ndofpn; 
sdof=nnode*ndofpn; 
elk=zeros(edof,edof); 
C=zeros(edof,edof);    
iopt=1; % 1 for plane stress and 2 for plane strain 
ngptXi=4; %  integ. points give accurate numerical integration 
ngptEt=4; %  integ. points give accurate numerical integration 
ngptXiEt=ngptXi*ngptEt; 
%2) zero matrices and vectors 
GF=zeros(sdof,1); 
GK=zeros(sdof,sdof); 
GD=zeros(sdof,1); 
eld=zeros(edof,1); 
stress=zeros(ngptXiEt,3); 
strain=zeros(ngptXiEt,3); 
Bmatrix=zeros(3,edof); 
Dmatrix=zeros(3,3); 
nonnect=zeros(nele,nnpel); 
LinG=zeros(edof,1); 
fix=zeros(sdof); 
% Reading node data [node No., XC, YC ] 
for n=1:nnode 
   node(n)=n; 
   xc(n)=nodedata(n,2); 
   yc(n)=nodedata(n,3); 
end 
% Reading Element Data 
for i=1:nele 
   element(i)=elementdata(i,1); 
   nconnect(i,1)=elementdata(i,2); 
   nconnect(i,2)=elementdata(i,3); 
   nconnect(i,3)=elementdata(i,4); 
   nconnect(i,4)=elementdata(i,5); 
end 
% Reading Nodal Forces [node No., Fx, Fy ] 
nforce=size(forcedata,1); 
for i=1:nforce 
   nno(i)=forcedata(i,1);  % nno = node number with force 
   GF(3*nno(i)-2)=forcedata(i,2); 
   GF(3*nno(i)-1)=forcedata(i,3); 
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   GF(3*nno(i))=forcedata(i,4); 
end 
% Reading fixation data  
nfix=size(fixdata,1); 
for i=1:nfix 
   nnofix(i)=fixdata(i,1);  % nnofix =  number of node with 
specified fixation 
   fix(3*nnofix(i)-2)=fixdata(i,2); 
   fix(3*nnofix(i)-1)=fixdata(i,3); 
   fix(3*nnofix(i))=fixdata(i,4); 
end 
fixeddisp2=find(fixdata(:,2)==1); 
lng2=length(fixeddisp2); 
for i=1:lng2 
   bcdof(i)=fixdata(fixeddisp2(i),1)*3-2; 
   bcval(i)=0; 
end 
fixeddisp3=find(fixdata(:,3)==1); 
lng3=length(fixeddisp3); 
for i=1 : lng3 
   bcdof(i+lng2)=fixdata(fixeddisp3(i),1)*3-1; 
   bcval(i+lng2)=0; 
end 
fixeddisp4=find(fixdata(:,4)==1); 
lng4=length(fixeddisp4); 
for i=1 : lng4 
   bcdof(i+lng2+lng3)=fixdata(fixeddisp3(i),1)*3; 
   bcval(i+lng2+lng3)=0; 
end 
bcdof=sort(bcdof); 
% Plot of the structure 
figure (1) 
for n=1:nele 
   x(1)= xc(nconnect(n,1)); 
   x(2)= xc(nconnect(n,2)); 
   x(3)= xc(nconnect(n,3)); 
   x(4)= xc(nconnect(n,4)); 
   x(5)= x(1); 
   y(1)= yc(nconnect(n,1)); 
   y(2)= yc(nconnect(n,2)); 
   y(3)= yc(nconnect(n,3)); 
   y(4)= yc(nconnect(n,4)); 
   y(5)= y(1); 
   plot (x,y, '-o','markersize',1.5) 
   axis equal 
   title('Graph of the Q4b Problem') 
   hold on 
end 
% writing results to output file 
fid1 = fopen(OutFileName,'w'); 
fprintf(fid1,'%s \n','------- <<<<< Node Data >>>>> ------------'); 
fprintf(fid1,'%s \t %s \t\t %s \n', 'Node','[x y-Fixation, Z 
rotation]','[x & y Coordinates]'); 
for i=1:nnode 
   fprintf(fid1,'%d \t %d \t %d \t %d \t %8.4f \t %8.4f 
\n',[i;fix(3*i-2);fix(3*i-1);fix(3*i);xc(i);yc(i)]); 
end 
fprintf(fid1, '\n');   
fprintf(fid1,'%s \n','------- <<<<< Element Data >>>>> ---------'); 
fprintf(fid1,'%s \t\t\t %s \t\t\t \n', 'Element','Nodes i-j-m-n 
Counterclockwise'); 
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fprintf(fid1, '\n'); 
for i=1:nele 
   fprintf(fid1,'%d \t %d \t %d \t %d \t %d  
\n',[i;nconnect(i,1);nconnect(i,2);nconnect(i,3);nconnect(i,4)]); 
 end 
fprintf(fid1, '\n'); 
 
% sampling Points and weights 
[point2,weight2]=Gquad2(ngptXi,ngptEt); 
Dmatrix=elmatmtx(emod,noo); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for n=1:nele 
   for i=1:nnpel 
      nd(i)=nconnect(n,i); 
      xcoord(i)=xc(nd(i)); 
      ycoord(i)=yc(nd(i)); 
   end 
   C=trans(xcoord, ycoord); 
   elk=zeros(edof,edof); 
   format long 
   for ix=1:ngptXi 
      Xival=point2(ix,1); 
      wtx=weight2(ix,1); 
      for iy=1:ngptEt 
         Etval=point2(iy,2); 
         wty=weight2(iy,2); 
         [Ns,pNpXi,pNpEt]=ShapeDerQ4(Xival,Etval); 

[detJac2,Bmatrix]= JacobBmatrixQ4(nnpel,edof, pNpXi,pNpEt, 
Xival, Etval, xcoord, ycoord); 

         elk=elk+Bmatrix'*Dmatrix*Bmatrix*detJac2*th*wtx*wty; 
      end 
   end 
   elk= transpose(inv(C))*elk*inv(C); 
   format bank 
   LinG=feeldof(nd,nnpel,ndofpn); 
   GK=assemble(GK,elk,LinG); 
end  % end of loop for elk and GK 
%----------------------------------------------------------- 
%apply boundary conditons 
[GK,GF]=applybc(GK,GF,bcdof,bcval); 
%----------------------------------------------------------- 
%Solve for Global Displacements, GD 
GD=inv(GK)*GF; 
%----------------------------------------------------------- 
fprintf(fid1,'%s \n','----- <<<<< Nodal Displacements >>>>> ----'); 
fprintf(fid1,'%s  \t %s \t %s \t %s  \t %s  \t %s \n', 'Node','--u--
', '--v--','--RZ--', '--x--','--y--'); 
for i=1:nnode 

fprintf(fid1,'%d \t %8.5f \t %8.5f \t %8.5f \t %8.5f \t %8.5f \t   
\n', [i;GD(3*i-2); GD(3*i-1); GD(3*i); xc(i); yc(i)]); 

end 
fprintf(fid1, '\n'); 
fprintf(fid1,'%s \n','--------- <<<<< Element Stresses>>>>> ----'); 
fprintf(fid1,'%s \t %s \t %s \t %s \t %s \t %s \n','Element',... 
   'Sigma-x','Sigma-y','Shear-xy','xlocation','ylcoation'); 
%----------------------------------------------------------- 
% Element stress  
kk = 1; 
for n=1:nele 
   for i=1:nnpel 
      nd(i)=nconnect(n,i); 
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      xcoord(i)=xc(nd(i)); 
      ycoord(i)=yc(nd(i)); 
   end 
   C=trans(xcoord, ycoord); 
   LinG=feeldof(nd,nnpel,ndofpn); 
   for i=1:edof 
      eld(i)=GD(LinG(i)); 
   end 
   Xivalues = [-1  1 1 -1 ]; 
   Etavalues =[-1 -1 1  1 ]; 
   % Values of Shape Functions at NODES 
   npoints = length(Xivalues); 
   for intp=1:npoints  
      Xival=Xivalues (intp); 
      Etval=Etavalues (intp);  
      [Ns,pNpXi,pNpEt]=ShapeDerQ4(Xival,Etval); 

[detJac2,Bmatrix]= JacobBmatrixQ4(nnpel, edof,pNpXi, pNpEt, 
Xival, Etval, xcoord,ycoord); 

      % Compute and store stress and strain 
      elstrain=Bmatrix* inv(C)* eld; 
      elstress=Dmatrix * Bmatrix* inv(C)* eld; 
      for i=1:3 
         strain(intp,i)=elstrain(i); 
         stress(intp,i)=elstress(i);         
         stressx(kk,1) = stress(intp,1); 
      end 
      xlocation=Ns* xcoord'; 
      ylocation=Ns* ycoord'; 
      xcoor(kk)  = xlocation; 
      ycoor(kk)  = ylocation; 
      kk=kk+1;    
      format short 

fprintf(fid1,'%d \t %10.2f \t %10.2f \t %10.2f \t %10.4f \t 
%10.4f \t\t \n',... 
[n;stress(intp,1); stress(intp,2); stress(intp,3); xlocation; 
ylocation]);      

   end 
end 
fclose(fid1); 
%------------------------------------------------------------ 
%plot of the structure showing bending stress 
figure (2) 
nl=length (xcoor); 
xlin = linspace(min(xcoor),max(xcoor),nl); 
ylin = linspace(min(ycoor),max(ycoor),nl); 
[X,Y] = meshgrid(xlin,ylin); 
Z = griddata(xcoor,ycoor,stressx,X,Y,'cubic'); 
surf(X,Y,Z);  
axis equal 
shading interp; 
colormap; 
%colorbar; 
view(0,90) 
%----------------------------------------------------------- 
function [NsQ4,pNpXiQ4,pNpEtQ4]=ShapeDerQ4(Xival,Etval); 
%Shape functions 
NsQ4(1)=0.25*(1-Xival)*(1-Etval);                  
NsQ4(2)=0.25*(1+Xival)*(1-Etval); 
NsQ4(3)=0.25*(1+Xival)*(1+Etval);   
NsQ4(4)=0.25*(1-Xival)*(1+Etval); 
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%Derivatives 
pNpXiQ4(1)=-0.25*(1-Etval); 
pNpXiQ4(2)=0.25*(1-Etval); 
pNpXiQ4(3)=0.25*(1+Etval); 
pNpXiQ4(4)=-0.25*(1+Etval); 
 
pNpEtQ4(1)=-0.25*(1-Xival); 
pNpEtQ4(2)=-0.25*(1+Xival); 
pNpEtQ4(3)=0.25*(1+Xival); 
pNpEtQ4(4)=0.25*(1-Xival); 
 
%----------------------------------------------------------- 
function 
[detJac2,Bmatrix]=JacobBmatrixQ4(nnpel,edof,pNpXi,pNpEt,Xival,Etval, 
xcoord,ycoord); 
Jac2=zeros(2,2); 
for i=1:nnpel 
   Jac2(1,1)=Jac2(1,1)+pNpXi(i)*xcoord(i); 
   Jac2(1,2)=Jac2(1,2)+pNpXi(i)*ycoord(i); 
   Jac2(2,1)=Jac2(2,1)+pNpEt(i)*xcoord(i); 
   Jac2(2,2)=Jac2(2,2)+pNpEt(i)*ycoord(i); 
end 
detJac2=det(Jac2); 
NsQ4(1)=0.25*(1-Xival)*(1-Etval);                  
NsQ4(2)=0.25*(1+Xival)*(1-Etval); 
NsQ4(3)=0.25*(1+Xival)*(1+Etval);   
NsQ4(4)=0.25*(1-Xival)*(1+Etval); 
x = NsQ4*xcoord';      % x = N1 x1 + N2 x2 + N3 x3 + N4 x4 
y = NsQ4*ycoord';      % y = N1 y1 + N2 y2 + N3 y3 + N4 y4 
%Bmatrix:  (SBREIR,  BY SALAH) 
Bmatrix =[  0,0,0,1,y,0,0,y^2,x*y^3,0,0,0; 
      0,0,0,0,0,1,x,-x^2,-y*x^3,0,0,0; 
      0,0,0,0,-x^2/2,0,-y^2/2,0,0,1,x,y]    ; 3x12 
%------------------------------------------------ 
% Function Gquad1 
function [point1,weight1]=Gquad1(ngpt) 
% ngpt  = number of Gauss Sampling / Integration Points    
% point1 = vector containing locations of integration points 1-D 
% weight1 = vector containing locations weighting factors 1-D 
 
% initalization  
point1=zeros(ngpt,1); 
weight1=zeros(ngpt,1); 
% use long format to capture maximum significant figures Important 
format long 
% find corresponding integration points 
if ngpt==1 
   point1(1)=0; 
   weight1(1)=0; 
elseif ngpt==2 
   point1(1)=-0.577350269189626; 
   point1(2)=-point1(1); 
   weight1(1)=1; 
   weight1(2)=1; 
elseif ngpt==3 
   point1(1)=-0.774596669241483; 
   point1(2)=0.0; 
   point1(3)=-point1(1); 
   weight1(1)=0.555555555555556; 
   weight1(2)=0.888888888888889; 
   weight1(3)=weight1(1); 
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elseif ngpt==4 
   point1(1)=-0.861136311594053; 
   point1(2)=-0.339981043584856; 
   point1(3)=-point1(2); 
   point1(4)=-point1(1); 
   weight1(1)=0.347854845137454; 
   weight1(2)=0.652145154862546; 
   weight1(3)=weight1(2); 
   weight1(4)=weight1(1); 
elseif ngpt==5 
   point1(1)=-0.906179845938664; 
   point1(2)=-0.538469310105683; 
   point1(3)=0; 
   point1(4)=-point1(2); 
   point1(5)=-point1(1); 
   weight1(1)=0.236926885056189; 
   weight1(2)=0.478628670499366; 
   weight1(3)=0.568888888888889; 
   weight1(4)=weight1(2); 
   weight1(5)=weight1(1); 
end 
%---------------------------------------------------------- 
%function Gquad 2 
function [point2,weight2]=Gquad2(ngptx,ngpty) 
% ngptx= # of Gauss Sampling / Integration Points in the x-direction  
% ngpty= # of Gauss Sampling / Integration Points in the y-direction 
% point2 = vector containing locations of integration points 2-D 
% weight2 = vector containing locations weighting factors 2-D 
if ngptx > ngpty 
   ngpt=ngptx; 
else 
   ngpt=ngpty; 
end 
% Intialization  
point2=zeros(ngpt,2); 
weight2=zeros(ngpt,2); 
% find corresponding integration points 
[pointx,weightx]=Gquad1(ngptx); 
[pointy,weighty]=Gquad1(ngpty); 
% store the obtained vectors in a 2-D vector 
for ix=1:ngptx 
   point2(ix,1)=pointx(ix); 
   weight2(ix,1)=weightx(ix); 
end 
for iy=1:ngpty 
   point2(iy,2)=pointy(iy); 
   weight2(iy,2)=weighty(iy); 
end 
%------------------------------------------------------ 
function[Dmatrix]=elmatmtx(emod,noo) 
Dmatrix=[1,noo,0;... 
      noo,1,0;... 
      0,0,0.5*(1-noo)]*emod/(1-noo^2); 
%------------------------------------------------------ 
function [LinG]=feeldof(nd,nnpel,ndofpn) 
k=0; 
for i =1:nnpel 
   start=(nd(i)-1)*ndofpn; 
   for j= 1:ndofpn 
      k=k+1; 
      LinG(k)=start+j; 
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   end 
end 
%------------------------------------------------------ 
function [GK]=assemble(GK,elk,LinG) 
edof=length(LinG); 
for i=1:edof 
   ii=LinG(i); 
   for j=1:edof 
      jj=LinG(j); 
      GK(ii,jj)=GK(ii,jj)+elk(i,j); 
   end 
end 
%------------------------------------------------------       
function [GK,GF]=applybc(GK,GF,bcdof,bcval) 
n=length(bcdof); 
sdof=size(GK); 
for i=1:n 
   c=bcdof(i); 
   for j=1:sdof 
      GK(c,j)=0; 
      GK(j,c)=0; 
   end 
   GK(c,c)=1; 
   GF(c)=bcval(i); 
end 
%------------------------------------------------------ 
function [C]= trans(xcoord, ycoord); 
C=zeros(12,12);    
for j =1:4 
   i1 = 3*j-2; 
   i2 = 3*j-1; 
   i3 = 3*j; 
   x=xcoord(j); 
   y=ycoord(j); 
    
   C(i1,:)= [1,0,-y,x,x*y,0,(-y^3/6-y^2/2),x*y^2,(x^2*y^3)/2,y/2, 0, 

(y^2)/2]; 
   C(i2,:)= [0,1,x,0,(-x^3/6-x^2/2),y,x*y,-y*x^2,-(x^3*y^2)/2, x/2, 

(x^2)/2,0]; 
 C(i3,:)=[0,0,1,0,(-x-x^2/4),0,(y+y^2/4),-2*x*y,-(3*x^2*y^2)/2,0, 

x/2, -y/2];   
end 
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A4.1 Sample Input File for New Strain Based Rectangular Element 

% Input for Rectangular Strain Based Element 
% Problem: Deep Cantilever Beam Loaded at the free end 
nele = 40;  %Nele = Total number of elements  
nnode= 55;  %Nnode = Total number of nodes in the structure 
% Node Data:  % Enter data for each node here: Node number, X&Y 
coordinates 
nodedata =[ 
     1     0     0; 
     2     1     0; 
     3     2     0; 
     4     3     0; 
     5     4     0; 
     6     5     0; 
     7     6     0; 
     8     7     0; 
     9     8     0; 
    10     9     0; 
    11    10     0; 
    12     0     1; 
    13     1     1; 
    14     2     1; 
    15     3     1; 
    16     4     1; 
    17     5     1; 
    18     6     1; 
    19     7     1; 
    20     8     1; 
    21     9     1; 
    22    10     1; 
    23     0     2; 
    24     1     2; 
    25     2     2; 
    26     3     2; 
    27     4     2; 
    28     5     2; 
    29     6     2; 
    30     7     2; 
    31     8     2; 
    32     9     2; 
    33    10     2; 
    34     0     3; 
    35     1     3; 
    36     2     3; 
    37     3     3; 
    38     4     3; 
    39     5     3; 
    40     6     3; 
    41     7     3; 
    42     8     3; 
    43     9     3; 
    44    10     3; 
    45     0     4; 
    46     1     4; 
    47     2     4; 
    48     3     4; 
    49     4     4; 
    50     5     4; 
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    51     6     4; 
    52     7     4; 
    53     8     4; 
    54     9     4; 
    55    10     4]; 
  
% Element Data: Enter data for each Element:  
% Element Number and four nodes (counterclockwise) 
elementdata =[ 
     1     1     2    13    12; 
     2     2     3    14    13; 
     3     3     4    15    14; 
     4     4     5    16    15; 
     5     5     6    17    16; 
     6     6     7    18    17; 
     7     7     8    19    18; 
     8     8     9    20    19; 
     9     9    10    21    20; 
    10    10    11    22    21; 
    11    12    13    24    23; 
    12    13    14    25    24; 
    13    14    15    26    25; 
    14    15    16    27    26; 
    15    16    17    28    27; 
    16    17    18    29    28; 
    17    18    19    30    29; 
    18    19    20    31    30; 
    19    20    21    32    31; 
    20    21    22    33    32; 
    21    23    24    35    34; 
    22    24    25    36    35; 
    23    25    26    37    36; 
    24    26    27    38    37; 
    25    27    28    39    38; 
    26    28    29    40    39; 
    27    29    30    41    40; 
    28    30    31    42    41; 
    29    31    32    43    42; 
    30    32    33    44    43; 
    31    34    35    46    45; 
    32    35    36    47    46; 
    33    36    37    48    47; 
    34    37    38    49    48; 
    35    38    39    50    49; 
    36    39    40    51    50; 
    37    40    41    52    51; 
    38    41    42    53    52; 
    39    42    43    54    53; 
    40    43    44    55    54]; 
% Element E-modulus and Poisson’s ratio noo and thickness 
emod= 100000; %KN/m2 NOTE: the displacement will be in millimeters 
noo= 0.2; 
th =0.0625;  
    
% Applied Forces Data:  Node Number, Fx, Fy, Mz 
forcedata= [      
   1, 0,-100/8,0; 
   12,0,-100/4,0; 
   23,0,-100/4,0; 
   34,0,-100/4,0; 
   45,0,-100/8,0 ]; 
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% Nodal Fixation Data: % Node Number, X-fixation, Y-fixation and Z 
rotation  
% (1 fixed & 0 not fixed)  
 
fixdata= [   
   11,1,1,1; 
   22,1,1,1; 
   33,1,1,1; 
   44,1,1,1; 
   55,1,1,1 ]; 
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A4.2 Sample Output File for New Strain Based Rectangular Element 

% Input for Rectangular Strain Based Element with In-Plane Rotation 
% Problem: Deep Cantilever Beam Loaded at the free end 
 
---------------- <<<<< Nodal Displacements >>>>> ------- 

Node --u-- --v-- --RZ-- --x-- --y-- 
1 0.3039 -1.1007 0.1661 0.0000 0.0000 
2 0.2985 -0.9365 0.1569 1.0000 0.0000 
3 0.2887 -0.7813 0.1517 2.0000 0.0000 
--- --- --- --- --- --- 
--- --- --- --- --- --- 
--- --- --- --- --- --- 
22 0.0000 0.0000 0.0000 10.0000 1.0000 
23 0.0001 -1.0937 0.1499 0.0000 2.0000 
24 0.0001 -0.9357 0.1502 1.0000 2.0000 
--- --- --- --- --- --- 
--- --- --- --- --- --- 
--- --- --- --- --- --- 
54 -0.0572 -0.0269 0.0340 9.0000 4.0000 
55 0.0000 0.0000 0.0000 10.0000 4.0000 

  
 
 

---------------- <<<<< Element Stresses>>>>> ----------  
Element Sigma-x Sigma-y Shear-xy xlocation ylcoation 

1 -468.53 367.59 129.24 0.00 0.00 
1 -525.42 83.14 207.25 0.50 0.00 
1 -499.03 215.05 182.79 1.00 0.00 
--- --- --- --- --- --- 
--- --- --- --- --- --- 
3 -725.44 115 431.1 2.50 1.00 
3 -738.07 41.63 408.61 2.00 1.00 
--- --- --- --- --- --- 
--- --- --- --- --- --- 
35 2753.26 -31.96 62.38 5.00 4.00 
36 3258.37 106.95 63.44 5.00 4.00 

 

 




